50 resultados para Hafnium oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally treated silicon rich oxides (SRO) used as starting material for the fabrication of silicon nanodots represent the basis of tunable bandgap nanostructured materials for optoelectronic and photonic applications. The optical modelization of such materials is of great interest, as it allows the simulation of reflectance and transmittance (R&T) spectra, which is a powerful non destructive tool in the determination of phase modifications (clustering, precipitation of new phases, crystallization) upon thermal treatments. In this paper, we study the optical properties of a variety of as-deposited and furnace annealed SRO materials. The different phases are treated by means of the effective medium approximation. Upon annealing at low temperature, R&T spectra show the precipitation of amorphous silicon nanoparticles, while the crystallization occurring at temperatures higher than 1000 °C is also clearly identified, in agreement with structural results. The existing literature on the optical properties of the silicon nanocrystals is reviewed, with attention on the specificity of the compositional and structural characteristics of the involved material. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate electronic structures of the technologically important lanthanide/rare-earth sesquioxides (Ln2O3, with Ln=La, ⋯,Lu) and CeO2 have been calculated using hybrid density functionals HSE03, HSE06, and screened exchange (sX-LDA). We find that these density functional methods describe the strongly correlated Ln f electrons as well as the recent G0W0@LDA+U results, generally yielding the correct band gaps and trends across the Ln period. For HSE, the band gap between O 2p states and lanthanide 5d states is nearly independent of the lanthanide, while the minimum gap varies as filled or empty Ln 4f states come into this gap. sX-LDA predicts the unoccupied 4f levels at higher energies, which leads to a better agreement with experiments for Sm2O 3, Eu2O3, and Yb2O3. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hafnium oxide (HfOx) is a high dielectric constant (k) oxide which has been identified as being suitable for use as the gate dielectric in thin film transistors (TFTs). Amorphous materials are preferred for a gate dielectric, but it has been an ongoing challenge to produce amorphous HfOx while maintaining a high dielectric constant. A technique called high target utilization sputtering (HiTUS) is demonstrated to be capable of depositing high-k amorphous HfOx thin films at room temperature. The plasma is generated in a remote chamber, allowing higher rate deposition of films with minimal ion damage. Compared to a conventional sputtering system, the HiTUS technique allows finer control of the thin film microstructure. Using a conventional reactive rf magnetron sputtering technique, monoclinic nanocrystalline HfOx thin films have been deposited at a rate of ∼1.6nmmin-1 at room temperature, with a resistivity of 1013Ωcm, a breakdown strength of 3.5MVcm-1 and a dielectric constant of ∼18.2. By comparison, using the HiTUS process, amorphous HfOx (x=2.1) thin films which appear to have a cubic-like short-range order have been deposited at a high deposition rate of ∼25nmmin-1 with a high resistivity of 1014Ωcm, a breakdown strength of 3MVcm-1 and a high dielectric constant of ∼30. Two key conditions must be satisfied in the HiTUS system for high-k HfOx to be produced. Firstly, the correct oxygen flow rate is required for a given sputtering rate from the metallic target. Secondly, there must be an absence of energetic oxygen ion bombardment to maintain an amorphous microstructure and a high flux of medium energy species emitted from the metallic sputtering target to induce a cubic-like short range order. This HfOx is very attractive as a dielectric material for large-area electronic applications on flexible substrates. A remote plasma sputtering process (high target utilization sputtering, HiTUS) has been used to deposit amorphous hafnium oxide with a very high dielectric constant (∼30). X-ray diffraction shows that this material has a microstructure in which the atoms have a cubic-like short-range order, whereas radio frequency (rf) magnetron sputtering produced a monoclinic polycrystalline microstructure. This is correlated to the difference in the energetics of remote plasma and rf magnetron sputtering processes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of doping limits in semiconductors and insulators is applied to the case of wide gap oxides, crystalline, or amorphous, and used to explain that impurities do not in general give rise to gap states or a doping response. Instead, the system tends to form defect complexes or undergo symmetry-lowering reconstructions to expel gap states out of the band gap. The model is applied to impurities, such as trivalent metals, carbon, N, P, and B, in HfO2, the main gate dielectric used in field effect transistors. © 2014 AIP Publishing LLC.