60 resultados para Grating profiles
Resumo:
Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.
Resumo:
A novel integrated Multi-Wavelength Grating Cavity (MGC) laser has been used for multi-channel wavelength conversion at 2.488 Gbits/s. Functions demonstrated include conversion to multiple wavelengths, WDM multiplexing and 1×4 space switching.
Resumo:
Multi-wavelength picosecond pulses are demonstrated using a single monolithically integrated Multi-wavelength Grating Cavity (MGC) laser. This is achieved on two WDM wavelength channels at a repetition rate of 7.63 GHz.
Resumo:
A novel technique for high quality femtosecond pulse generation from a gain-switched laser diode by means of pulse compression and transformation in a compact nonlinear fiber device, based on a dispersion-imbalanced fiber loop mirror (DILM) is demonstrated. This source allows the generation of extremely high quality pulses as short as 270 fs on demand with strong suppression of pulse pedestals. Spectral filtering in arrayed waveguide grating (AWG) converts the device into a compact multiwavelength source of high-quality picosecond pulses for optical time division multiplexing/wavelength division multiplexing applications.
Resumo:
This paper describes a program of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data was then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades to simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment.
Resumo:
A novel integrated Multi-Wavelength Grating Cavity (MGC) laser has been used for multi-channel wavelength conversion at 2.488Gbits/s. Functions demonstrated include conversion to multiple wavelengths, WDM multiplexing and 1×4 space switching.
Resumo:
Operating limits of a chirped fibre grating dispersion compensator are determined using a complete optical system model. A 10cm compensator extends the transmission range of an optimised 10Gbit/s MQW electroabsorption modulator from 80km to 425km.
Resumo:
Two-dimensional MOS device simulation programs such as MINIMOS left bracket 1 right bracket are limited in their validity due to assumptions made in defining the initial two-dimensional source/drain profiles. The two options available to define source/drain regions both construct a two-dimensional profile from one-dimensional profiles normal to the surface. Inaccuracies in forming these source/drain profiles can be expected to effect predicted device characteristics as channel dimensions of the device are reduced. This paper examines these changes by interfacing numerically similated two dimensional source/drain profiles to MINIMOS and comparing predicted I//D-V//D characteristics with 2-D interfacing, 2-D profiles constructed from interfaced 1-D profiles and MINIMOS self generated profiles. Data obtained for simulations of 3 mu m N and P channel devices are presented.
Resumo:
An experimental setup and a simple reconstruction method are presented to measure velocity fields inside slightly tapering cylindrical liquid jets traveling through still air. Particle image velocimetry algorithms are used to calculate velocity fields from high speed images of jets of transparent liquid containing seed particles. An inner central plane is illuminated by a laser sheet pointed at the center of the jet and visualized through the jet by a high speed camera. Optical distortions produced by the shape of the jet and the difference between the refractive index of the fluid and the surrounding air are corrected by using a ray tracing method. The effect of the jet speed on the velocity fields is investigated at four jet speeds. The relaxation rate for the velocity profile downstream of the nozzle exit is reasonably consistent with theoretical expectations for the low Reynolds numbers and the fluid used, although the velocity profiles are considerably flatter than expected. © 2012 American Society of Mechanical Engineers.
Resumo:
We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.