51 resultados para General Linear Methods
Resumo:
Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.
Resumo:
Nonlinear analysis of thermoacoustic instability is essential for prediction of frequencies and amplitudes of limit cycles. In frequency domain analyses, a quasi-linear transfer function between acoustic velocity and heat release rate perturbations, called the flame describing function (FDF), is obtained from a flame model or experiments. The FDF is a function of the frequency and amplitude of velocity perturbations but only contains the heat release response at the forcing frequency. While the gain and phase of the FDF provide insight into the nonlinear dynamics of the system, the accuracy of its predictions remains to be verified for different types of nonlinearity. In time domain analyses, the governing equations of the fully coupled problem are solved to find the time evolution of the system. One method is to discretize the governing equations using a suitable basis, such as the natural acoustic modes of the system. The number of modes used in the discretization alters the accuracy of the solution. In our previous work we have shown that predictions using the FDF are almost exactly the same as those obtained from the time-domain using only one mode for the discretization. We call this the single-mode method. In this paper we compare results from the single-mode and multi-mode methods, applied to a thermoacoustic system of a premixed flame in a tube. For some cases, the results differ greatly in both amplitude as well as frequency content. This study shows that the contribution from higher and subharmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems. Hence multi-mode simulations are necessary, and the single-mode method or the FDF may be insufficient to capture some of the complex nonlinear behaviour in fhermoacoustics.
Resumo:
To explore the relational challenges for general practitioner (GP) leaders setting up new network-centric commissioning organisations in the recent health policy reform in England, we use innovation network theory to identify key network leadership practices that facilitate healthcare innovation.
Resumo:
A detailed lumped-parameter thermal model is presented for a tubular linear machine that has been designed for use in a marine environment. The model has been developed for a static machine, the worst-case thermal scenario, and is used to establish a rating for the machine. The model has been validated against a large range of experimental tests and shows good correlation to both steady-state and transient experimental results. The model was constructed from a mostly theoretical basis with very little calibration, suggesting that the techniques used are applicable in a more general sense. © 2013 IEEE.
Resumo:
It is well known that the power absorbed by a linear oscillator when excited by white noise base acceleration depends only on the mass of the oscillator and the spectral density of the base motion. This places an upper bound on the energy that can be harvested from a linear oscillator under broadband excitation, regardless of the stiffness of the system or the damping factor. It is shown here that the same result applies to any multi-degree-of-freedom nonlinear system that is subjected to white noise base acceleration: for a given spectral density of base motion the total power absorbed is proportional to the total mass of the system. The only restriction to this result is that the internal forces are assumed to be a function of the instantaneous value of the state vector. The result is derived analytically by several different approaches, and numerical results are presented for an example two-degree-of-freedom-system with various combinations of linear and nonlinear damping and stiffness. © 2013 The Author.
Resumo:
© 2015 John P. Cunningham and Zoubin Ghahramani. Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted. Here we survey methods from this disparate literature as optimization programs over matrix manifolds. We discuss principal component analysis, factor analysis, linear multidimensional scaling, Fisher's linear discriminant analysis, canonical correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient dimensionality reduction, undercomplete independent component analysis, linear regression, distance metric learning, and more. This optimization framework gives insight to some rarely discussed shortcomings of well-known methods, such as the suboptimality of certain eigenvector solutions. Modern techniques for optimization over matrix manifolds enable a generic linear dimensionality reduction solver, which accepts as input data and an objective to be optimized, and returns, as output, an optimal low-dimensional projection of the data. This simple optimization framework further allows straightforward generalizations and novel variants of classical methods, which we demonstrate here by creating an orthogonal-projection canonical correlations analysis. More broadly, this survey and generic solver suggest that linear dimensionality reduction can move toward becoming a blackbox, objective-agnostic numerical technology.