74 resultados para Gambusia affinis, mass
Resumo:
Two series of ferroelectric liquid crystalline organo-siloxanes containing a laterally attached halogen on the phenyl ring have been synthesised and characterised to determine the impact of the siloxane group and the halogen on the mesomorphism and electro-optic switching properties. Both monomesogenic and bimesogenic compounds have been studied. The monomesogenic derivatives were found to be ferroelectric with high tilt and Ps. The tilt angle of 45° and the Ps of 95nC/cm2 are almost temperature independent. The bimesogenic bromo substituted derivatives showed mainly ferroelectric phases about 60°C wide. Maximum values for the spontaneous polarisation and the tilt angle were only slightly influenced by the length of the siloxane spacer. Altering the halogen to a fluorine shifted the liquid cystalline phase slightly to higher temperatures whilst maintaining the mesophase range of 60°C.
Resumo:
In low molar mass organosiloxane liquid-crystal materials the siloxane moieties micro-separate and aggregate in planes that could be regarded as an effective or virtual two-dimensional polymer backbone. We show that if a siloxane moiety is attached to a dichroic dye molecule, the micro-segregation of the siloxane moieties makes it possible to include a high concentration of the guest dye (more than 50%) in a host organosiloxane solution. This effect, combined with the temperature independent tilt angles achievable with ferroelectric organosiloxane liquid crystals, provide an ideal material for high-contrast surface-stabilised ferroelectric display devices. We present dyed ferroelectric materials with a temperature independent tilt angle greater than 42 degrees, a wide (room temperature to over 100°C) mesomorphic temperature range and a response time shorter than 500μs in the dye guest host mode.