55 resultados para Financial depth
Resumo:
Information is one of the most important resources in our globalized economy. The value of information often exceeds the value of physical assets. Information quality has, in many ways, an impact on asset management organisations and asset managers struggle to understand and to quantify it, which is a prerequisite for effective information quality improvement. Over the past few years, we have developed an innovative management concept that addresses these new asset management challenges: a process for Total Information Risk Management (TIRM), which has been already tested in a number of asset management industries. The TIRM process enables to manage information quality more effectively in asset management organisations as it focuses specifically on the risks that are imposed by information quality. In this paper, we show how we have applied the TIRM process in an in-depth study at a medium-sized European utility provider, the Manx Electricity Authority (MEA), at the Isle of Man.
Resumo:
In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. The uplift displacement of an underground structure in liquefiable soil deposit can be affected by the buried depth and size of the structure. Dynamic centrifuge tests have been carried out to investigate the influence of these factors by measuring the uplift displacement of shallow model circular structures. Ratios for the buried depth and diameter effects of the structure are introduced to compare the uplift displacement in different soil and earthquake conditions. With the depth effect and diameter effect ratios, the uplift displacement of a buoyant structure in liquefiable soil can also be estimated based on performance of similar structures in comparable soil condition and subjected to a similar earthquake event. © 2012 Elsevier Ltd.
Resumo:
Innovation is a critical factor in ensuring commercial success within the area of medical technology. Biotechnology and Healthcare developments require huge financial and resource investment, in-depth research and clinical trials. Consequently, these developments involve a complex multidisciplinary structure, which is inherently full of risks and uncertainty. In this context, early technology assessment and 'proof of concept' is often sporadic and unstructured. Existing methodologies for managing the feasibility stage of medical device development are predominantly suited to the later phases of development and favour detail in optimisation, validation and regulatory approval. During these early phases, feasibility studies are normally conducted to establish whether technology is potentially viable. However, it is not clear how this technology viability is currently measured. This paper aims to redress this gap through the development of a technology confidence scale, as appropriate explicitly to the feasibility phase of medical device design. These guidelines were developed from analysis of three recent innovation studies within the medical device industry.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.
Resumo:
The lack of viable methods to map and label existing infrastructure is one of the engineering grand challenges for the 21st century. For instance, over two thirds of the effort needed to geometrically model even simple infrastructure is spent on manually converting a cloud of points to a 3D model. The result is that few facilities today have a complete record of as-built information and that as-built models are not produced for the vast majority of new construction and retrofit projects. This leads to rework and design changes that can cost up to 10% of the installed costs. Automatically detecting building components could address this challenge. However, existing methods for detecting building components are not view and scale-invariant, or have only been validated in restricted scenarios that require a priori knowledge without considering occlusions. This leads to their constrained applicability in complex civil infrastructure scenes. In this paper, we test a pose-invariant method of labeling existing infrastructure. This method simultaneously detects objects and estimates their poses. It takes advantage of a recent novel formulation for object detection and customizes it to generic civil infrastructure scenes. Our preliminary experiments demonstrate that this method achieves convincing recognition results.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.
Resumo:
We present a system for augmenting depth camera output using multispectral photometric stereo. The technique is demonstrated using a Kinect sensor and is able to produce geometry independently for each frame. Improved reconstruction is demonstrated using the Kinect's inbuilt RGB camera and further improvements are achieved by introducing an additional high resolution camera. As well as qualitative improvements in reconstruction a quantitative reduction in temporal noise is shown. As part of the system an approach is presented for relaxing the assumption of multispectral photometric stereo that scenes are of constant chromaticity to the assumption that scenes contain multiple piecewise constant chromaticities.
Resumo:
The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.