88 resultados para Fiber-reinforced polymer composite


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19. kPa to 450±100. kPa. Stiffer hydrogels, with elastic modulus of 820±210. kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in functionality and reliability of nanocomposite materials require careful formulation of processing methods to ultimately realize the desired properties. An extensive study of how the variation in fabrication process would affect the mechanism of conductivity and thus the final electrical properties of the carbon nanotube-polymer composite is presented. Some of the most widely implemented procedures are addressed, such as ultrasonication, melt shear mixing, and addition of surfactants. It is hoped that this study could provide a systematic guide to selecting and designing the downstream processing of carbon nanocomposites. Finally, this guide is used to demonstrate the fabrication and performance of a stretchable (pliable) conductor that can reversibly undergo uniaxial strain of over 100%, and other key applications are discussed. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrohydrodynamic (EHD) pattern formation in carbon nanotube-polymer composite films yields well-defined patterns on the micrometer scale along with the alignment of carbon nanotubes (CNTs) within these patterns. Conductive pathways in nanotube networks formed during EHD patterning of nanocomposite films results in a substantial increase in the composites' conductivity at loadings exceeding the percolation threshold. The degree of nanotube alignment can be tuned by adjusting the EHD parameters and the degree of alignment is mirrored by the conductivity across the film. Using etching techniques or by embedding relatively long nanotubes, patterned surfaces decorated by CNT brushes were generated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.