67 resultados para Ergodic Capacity


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is demonstrated that doubling the sampling rate recovers some of the loss in capacity incurred on the bandlimited Gaussian channel with a one-bit output quantizer. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary and ergodic fading processes of a given spectral distribution function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. The assumption that the law of the fading process has no mass point at zero is essential in the sense that there exist stationary and ergodic fading processes whose law has a mass point at zero and that give rise to a smaller pre-log than the Gaussian process of equal spectral distribution function. An extension of these results to multiple-input single-output (MISO) fading channels with memory is also presented. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity of peak-power limited, single-antenna, non-coherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary & ergodic fading processes of a given spectral distribution function whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. © 2006 IEEE.