50 resultados para Electromagnetism in medicine.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An ultrasound image is created from backscattered echoes originating from both diffuse and directional scattering. It is potentially useful to separate these two components for the purpose of tissue characterization. This article presents several models for visualization of scattering fields on 3-dimensional (3D) ultrasound imaging. By scanning the same anatomy from multiple directions, we can observe the variation of specular intensity as a function of the viewing angle. This article considers two models for estimating the diffuse and specular components of the backscattered intensity: a modification of the well-known Phong reflection model and an existing exponential model. We examine 2-dimensional implementations and also propose novel 3D extensions of these models in which the probe is not constrained to rotate within a plane. Both simulation and experimental results show that improved performance can be achieved with 3D models. © 2013 by the American Institute of Ultrasound in Medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively. © 2014 Springer Science+Business Media New York.