49 resultados para Electromagnetic Vibration Energy Harvesting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of free vibration in elastic structure can lead to energy-efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, the goals of this paper are to propose a design strategy of hopping robot based on elastic curved beams and actuated rotating masses and to identify the minimalistic model that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three 1-D models are examined that contain different configurations of simple spring-damper-mass components. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the self-stability of hopping motion under disturbances is investigated, and design and control parameters are analyzed for the energy-efficient hopping. In addition, further analyses show that this robot can achieve the energy-efficient hopping with the variation in payload, and the source of energy dissipation of the robot hopping is investigated. © 1982-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of free vibration in elastic structure can lead to energy efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, this paper explores three minimalistic models of free vibration that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three one-dimensional models are examined that contain different configurations of simple spring-damper-mass components. The self-stability of these models are also investigated in simulation. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the control parameters are analyzed for the energy efficient hopping. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a novel approach to the design of low-cost and energy-efficient hopping robots, which makes use of free vibration of an elastic curved beam. We found that a hopping robot could benefit from an elastic curved beam in many ways such as low manufacturing cost, light body weight and small energy dissipation in mechanical interactions. A challenging problem of this design strategy, however, lies in harnessing the mechanical dynamics of free vibration in the elastic curved beam: because the free vibration is the outcome of coupled mechanical dynamics between actuation and mechanical structures, it is not trivial to systematically design mechanical structures and control architectures for stable locomotion. From this perspective, this paper investigates a case study of simple hopping robot to identify the design principles of mechanics and control. We developed a hopping robot consisting of an elastic curved beam and a small rotating mass, which was then modeled and analyzed in simulation. The experimental results show that the robot is capable of exhibiting stable hopping gait patterns by using a small actuation with no sensory feedback owing to the intrinsic stability of coupled mechanical dynamics. Furthermore, an additional analysis shows that, by exploiting free vibration of the elastic curved beam, cost of transport of the proposed hopping locomotion can be in the same rage of animals' locomotion including human running. © 2011 IEEE.