55 resultados para EXPONENTIALLY EXPANDING MESH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global stabilization of a class of feedforward systems having an exponentially unstable Jacobian linearization is achieved by a high-gain feedback saturated at a low level. The control law forces the derivatives of the state variables to small values along the closed-loop trajectories. This "slow control" design is illustrated with a benchmark example and its limitations are emphasized. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic deformation of both edge clamped stainless steel sandwich panels with a pyramidal truss core and equal mass monolithic plates loaded by spherically expanding shells of dry and water saturated sand has been investigated, both experimentally and via a particle based simulation methodology. The spherically expanding sand shell is generated by detonating a sphere of explosive surrounded by a shell of either dry or water saturated synthetic sand. The measurements show that the sandwich panel and plate deflections decrease with increasing stand-off between the center of the charge and the front of the test structures. Moreover, for the same charge and sand mass, the deflections of the plates are significantly higher in the water saturated sand case compared to that of dry sand. For a given stand-off, the mid-span deflection of the sandwich panel rear faces was substantially less than that of the corresponding monolithic plate for both the dry and water saturated sand cases. The experiments were simulated via a coupled discrete-particle/ finite element scheme wherein the high velocity impacting sand is modeled by interacting particles while the plate is modeled within a Lagrangian finite element setting. The simulations are in good agreement with the measurements for the dry sand impact of both the monolithic and sandwich structures. However, the simulations underestimate the effect of stand-off in the case of the water saturated sand explosion, i.e. the deflections decrease more sharply with increasing stand-off in the experiments compared to the simulations. The simulations reveal that the momentum transmitted into the sandwich and monolithic plate structures by the sand shell is approximately the same, consistent with a small fluid-structure interaction effect. The smaller deflection of the sandwich panels is therefore primarily due to the higher bending strength of sandwich structures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.