53 resultados para ENERGY-LOSS SPECTROSCOPY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen can have numerous effects on diamond-like carbon: it can dope, it can form the hypothetical superhard compound C3N4, or it can create fullerene-like bonding structures. We studied amorphous carbon nitrogen films deposited by a filtered cathodic vacuum arc as a function of nitrogen content, ion energy and deposition temperature. The incorporation of nitrogen from 10-2 to 10 at% was measured by secondary ion mass spectrometry and elastic recoil detection analysis and was found to vary slightly sublinearly with N2 partial pressure during deposition. In the doping regime from 0 to about 0.4% N, the conductivity changes while the sp3 content and optical gap remain constant. From 0.4 to approximately 10% N, existing sp2 sites condense into clusters and reduce the band gap. Nitrogen contents over 10% change the bonding from mainly sp3 to mainly sp2. Ion energies between 20 and 250 eV do not greatly modify this behaviour. Deposition at higher temperatures causes a sudden loss of sp3 bonding above about 150 °C. Raman spectroscopy and optical gap data show that existing sp2 sites begin to cluster below this temperature, and the clustering continues above this temperature. This transition is found to vary only weakly with nitrogen addition, for N contents below 10%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper advocates 'reduce, reuse, recycle' as a complete energy savings strategy. While reduction has been common to date, there is growing need to emphasize reuse and recycling as well. We design a DC-DC buck converter to demonstrate the 3 techniques: reduce with low-swing and zero voltage switching (ZVS), reuse with supply stacking, and recycle with regulated delivery of excess energy to the output load. The efficiency gained from these 3 techniques helps offset the loss of operating drivers at very high switching frequencies which are needed to move the output filter completely on-chip. A prototype was fabricated in 0.18μm CMOS, operates at 660MHz, and converts 2.2V to 0.75-1.0V at ∼50mA.1 © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power consumption of a multi-GHz local clock driver is reduced by returning energy stored in the clock-tree load capacitance back to the on-chip power-distribution grid. We call this type of return energy recycling. To achieve a nearly square clock waveform, the energy is transferred in a non-resonant way using an on-chip inductor in a configuration resembling a full-bridge DC-DC converter. A zero-voltage switching technique is implemented in the clock driver to reduce dynamic power loss associated with the high switching frequencies. A prototype implemented in 90 nm CMOS shows a power savings of 35% at 4 GHz. The area needed for the inductor in this new clock driver is about 6% of a local clock region. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scalable monolithically integrated photonic space switch is proposed which uses a combination of Mach-Zehnder modulators and semiconductor optical amplifiers (SOAs) for improved crosstalk performance and reduced switch loss. This architecture enables the design of high-capacity, high-speed, large-port count, low-energy switches. Extremely low crosstalk of better than -50 dB can be achieved using a 2 × 2 dilated hybrid switch module. A 'building block' approach is applied to make large port count optical switches possible. Detailed physical layer multiwavelength simulations are used to investigate the viability of a 64 × 64 port switch. Optical signal degradation is estimated as a function of switch size and waveguide induced crosstalk. A comparison between hybrid and SOA switching fabrics highlights the power-efficient, high-performance nature of the hybrid switch design, which consumes less than one-third of the energy of an equivalent SOA-based switch. The significantly reduced impairments resulting from this switch design enable scaling of the port count, compared to conventional SOA-based switches. © 1983-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The findings presented herein show that the electronic properties of CVD graphene on nickel can be altered from metallic to semiconducting by introducing oxygen adsorbates via UV/ozone or oxygen plasma treatment. These properties can be partially recovered by removing the oxygen adsorbates via vacuum annealing treatment. The effect of oxidation is studied by scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS). As probed by STM/STS, an energy gap opening of 0.11-0.15 eV is obtainable as the oxygen/carbon atomic ratio reaches 13-16%. The corresponding XPS spectra show a significant monotonic increase in the concentration of oxygenated functional groups due to the oxidation treatments. This study demonstrates that the opening of energy gap in CVD graphene can be reasonably controlled by a combination of UV/ozone or oxygen plasma treatment and vacuum annealing treatment. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-phase computational fluid dynamics modelling is used to investigate the magnitude of different contributions to the wet steam losses in a three-stage model low pressure steam turbine. The thermodynamic losses (due to irreversible heat transfer across a finite temperature difference) and the kinematic relaxation losses (due to the frictional drag of the drops) are evaluated directly from the computational fluid dynamics simulation using a concept based on entropy production rates. The braking losses (due to the impact of large drops on the rotor) are investigated by a separate numerical prediction. The simulations show that in the present case, the dominant effect is the thermodynamic loss that accounts for over 90% of the wetness losses and that both the thermodynamic and the kinematic relaxation losses depend on the droplet diameter. The numerical results are brought into context with the well-known Baumann correlation, and a comparison with available measurement data in the literature is given. The ability of the numerical approach to predict the main wetness losses is confirmed, which permits the use of computational fluid dynamics for further studies on wetness loss correlations. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper covers wear and energy dissipation of solid epoxy induced by the alternative rubbing between two samples of identical thermosetting polymer. Varying normal load, sliding velocity and sliding distance, the authors were able to define and discuss wear and friction laws and associated energy dissipation. Moreover, traces of several wear mechanisms were distinguished on the worn surfaces and associated with applied conditions. Observed under higher velocity, polymer softening and local state transition were explained by surface temperature estimate and confirmed by infra-red spectroscopy measurements. To conclude this study, all observed phenomena are classified into two wear scenarios according to sliding velocity. © 2014 Elsevier Ltd.