72 resultados para Discrete Time Branching Processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finitedimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets. Copyright 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finite-dimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We define a copula process which describes the dependencies between arbitrarily many random variables independently of their marginal distributions. As an example, we develop a stochastic volatility model, Gaussian Copula Process Volatility (GCPV), to predict the latent standard deviations of a sequence of random variables. To make predictions we use Bayesian inference, with the Laplace approximation, and with Markov chain Monte Carlo as an alternative. We find both methods comparable. We also find our model can outperform GARCH on simulated and financial data. And unlike GARCH, GCPV can easily handle missing data, incorporate covariates other than time, and model a rich class of covariance structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a stochastic process with Wishart marginals: the generalised Wishart process (GWP). It is a collection of positive semi-definite random matrices indexed by any arbitrary dependent variable. We use it to model dynamic (e.g. time varying) covariance matrices. Unlike existing models, it can capture a diverse class of covariance structures, it can easily handle missing data, the dependent variable can readily include covariates other than time, and it scales well with dimension; there is no need for free parameters, and optional parameters are easy to interpret. We describe how to construct the GWP, introduce general procedures for inference and predictions, and show that it outperforms its main competitor, multivariate GARCH, even on financial data that especially suits GARCH. We also show how to predict the mean of a multivariate process while accounting for dynamic correlations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given a spectral density matrix or, equivalently, a real autocovariance sequence, the author seeks to determine a finite-dimensional linear time-invariant system which, when driven by white noise, will produce an output whose spectral density is approximately PHI ( omega ), and an approximate spectral factor of PHI ( omega ). The author employs the Anderson-Faurre theory in his analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the effect of the rotor tip on the casing heat load of a transonic axial flow turbine. The aim of the research is to understand the dominant causes of casing heat-transfer. Experimental measurements were conducted at engine-representative Mach number, Reynolds number and stage inlet to casing wall temperature ratio. Time-resolved heat-transfer coefficient and gas recovery temperature on the casing were measured using an array of heat-transfer gauges. Time-resolved static pressure on the casing wall was measured using Kulite pressure transducers. Time-resolved numerical simulations were undertaken to aid understanding of the mechanism responsible for casing heat load. The results show that between 35% and 60% axial chord the rotor tip-leakage flow is responsible for more than 50% of casing heat transfer. The effects of both gas recovery temperature and heat transfer coefficient were investigated separately and it is shown that an increased stagnation temperature in the rotor tip gap dominates casing heat-transfer. In the tip gap the stagnation temperature is shown to rise above that found at stage inlet (combustor exit) by as much as 35% of stage total temperature drop. The rise in stagnation temperature is caused by an isentropic work input to the tip-leakage fluid by the rotor. The size of this mechanism is investigated by computationally tracking fluid path-lines through the rotor tip gap to understand the unsteady work processes that occur. Copyright © 2005 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the application of Discrete Event Simulation (DES) in modelling the complex relationship between patient types, case-mix and operating theatre allocation in a large National Health Service (NHS) Trust in London. The simulation model that was constructed described the main features of nine theatres, focusing on operational processes and patient throughput times. The model was used to test three scenarios of case-mix and to demonstrate the potential of using simulation modelling as a cost effective method for understanding the issues of healthcare operations management and the role of simulation techniques in problem solving. The results indicated that removing all day cases will reduce patient throughput by 23.3% and the utilization of the orthopaedic theatre in particular by 6.5%. This represents a case example of how DES can be used by healthcare managers to inform decision making. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present Poisson sum series representations for α-stable (αS) random variables and a-stable processes, in particular concentrating on continuous-time autoregressive (CAR) models driven by α-stable Lévy processes. Our representations aim to provide a conditionally Gaussian framework, which will allow parameter estimation using Rao-Blackwellised versions of state of the art Bayesian computational methods such as particle filters and Markov chain Monte Carlo (MCMC). To overcome the issues due to truncation of the series, novel residual approximations are developed. Simulations demonstrate the potential of these Poisson sum representations for inference in otherwise intractable α-stable models. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel test method for the characterisation of flexible forming processes is proposed and applied to four flexible forming processes: Incremental Sheet Forming (ISF), conventional spinning, the English wheel and power hammer. The proposed method is developed in analogy with time-domain control engineering, where a system is characterised by its impulse response. The spatial impulse response is used to characterise the change in workpiece deformation created by a process, but has also been applied with a strain spectrogram, as a novel way to characterise a process and the physical effect it has on the workpiece. Physical and numerical trials to study the effects of process and material parameters on spatial impulse response lead to three main conclusions. Incremental sheet forming is particularly sensitive to process parameters. The English wheel and power hammer are strongly similar and largely insensitive to both process and material parameters. Spinning develops in two stages and is sensitive to most process parameters, but insensitive to prior deformation. Finally, the proposed method could be applied to modelling, classification of existing and novel processes, product-process matching and closed-loop control of flexible forming processes. © 2012 Elsevier B.V.