58 resultados para Direct Sum of Cyclics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs) have the potential to significantly improve upon the sensitivity and minimum detection limit of traditional gravimetric sensors based on quartz crystal microbalances (QCMs) and surface acoustic wave resonators (SAWs). To date, neither FBAR nor SMR devices have been demonstrated to be superior to the other; hence the choice between them depends primarily on the users' ability to design/fabricate membranes and/or Bragg reflectors. In this work, it is shown that identically designed FBAR and SMR devices resonating at the same frequency exhibit different responsivities to mass loadings, Rm, and that the SMRs are less responsive than the FBARs. For the specific device design and resonant frequency (~2 GHz) of the resonators presented here, the FBARs' mass responsivity is ~20% greater than that of the SMRs', and although this value is not universal for all possible device designs, it clearly shows that FBAR devices should be favoured over SMRs in gravimetric sensing applications where the FBARs' fragility is not an issue. Numerical calculations based on Mason's model offer an insight into the physical mechanisms behind the greater FBARs responsivity, and it was shown that the Bragg reflector has an effect on the acoustic load at one of the facets of the piezoelectric films which is in turn responsible for the SMRs' lower responsivity to mass loadings. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the dynamics of hot charge carriers in InP nanowire ensembles containing a range of densities of zinc-blende inclusions along the otherwise wurtzite nanowires. From time-dependent photoluminescence spectra, we extract the temperature of the charge carriers as a function of time after nonresonant excitation. We find that charge-carrier temperature initially decreases rapidly with time in accordance with efficient heat transfer to lattice vibrations. However, cooling rates are subsequently slowed and are significantly lower for nanowires containing a higher density of stacking faults. We conclude that the transfer of charges across the type II interface is followed by release of additional energy to the lattice, which raises the phonon bath temperature above equilibrium and impedes the carrier cooling occurring through interaction with such phonons. These results demonstrate that type II heterointerfaces in semiconductor nanowires can sustain a hot charge-carrier distribution over an extended time period. In photovoltaic applications, such heterointerfaces may hence both reduce recombination rates and limit energy losses by allowing hot-carrier harvesting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Agat-SF linear-scan streak image-converter camera was used to record output pulses of 2. 7 psec duration generated by an injection laser with an external dispersive resonator operated in the active mode-locking regime. The duration of the pulses was determined by the reciprocal of the spectral width and the product of the duration and the spectral width was 0. 30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present electron-beam-induced oxidation of single- and bilayer graphene devices in a low-voltage scanning electron microscope. We show that the injection of oxygen leads to targeted etching at the focal point, enabling us to pattern graphene with a resolution of better than 20 nm. Voltage-contrast imaging, in conjunction with finite-element simulations, explain the secondary-electron intensities and correlate them to the etch profile. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the feasibility of transducing molecular-recognition events into a measurable potentiometric signal. It is shown for the first time that biorecognition of acetylcholine (ACh) can be translated to conformational changes in the enzyme, acetylcholine-esterase (AChE), which in turn induces a measurable change in surface potential. Our results show that a highly sensitive detector for ACh can be obtained by the dilute assembly of AChE on a floating gate derived field effect transistor (FG-FET). A wide concentration range response is observed for ACh (10(-2)-10(-9)M) and for the inhibitor carbamylcholine CCh (10(-6)-10(-11)M). These enhanced sensitivities are modeled theoretically and explained by the combined response of the device to local pH changes and molecular dipole variations due to the enzyme-substrate recognition event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the magnetisation of a 2 in. diameter YBCO thin film in the presence of traveling magnetic waves with six hall sensors. Simulation based on finite element method was conducted to reproduce the process of magnetisation. We discovered that the magnetisation of YBCO thin film based on traveling waves does not follow the constant current density assumption as used in the standing wave condition. We have shown that the traveling wave is more efficient in transporting the flux into the YBCO thin film, which suggests the potential of a flux injection device for high temperature superconducting coils. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique enabling 10 Gbps data to be directly modulated onto a monolithic sub-THz dual laser transmitter is proposed. As a result of the laser chirp, the logical zeros of the resultant sub-THz signal have a different peak frequency from that of the logical ones. The signal extinction ratio is therefore enhanced by suppressing the logical zeros with a filter stage at the receiver. With the aid of the chirp-enhanced filtering, an improved extinction ratio can be achieved at moderate modulation current. Hence, 10 GHz modulation bandwidth of the transmitter is predicted without the need for external modulators. In this paper, we demonstrate the operational principle by generating an error-free (bit error rate less than 10-9) 100 Mbps Manchester encoded signal with a centre frequency of 12 GHz within the bandwidth of an envelope detector, whilst direct modulation of a 100 GHz signal at data rates of up to 10 Gbps is simulated by using a transmission line model. This work could be a key technique for enabling monolithic sub-THz transmitters to be readily used in high speed wireless links. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct formation of large-area carbon thin films on gallium nitride by chemical vapor deposition without metallic catalysts is demonstrated. A high flow of ammonia is used to stabilize the surface of the GaN (0001)/sapphire substrate during the deposition at 950°C. Various characterization methods verify that the synthesized thin films are largely sp 2 bonded, macroscopically uniform, and electrically conducting. The carbon thin films possess optical transparencies comparable to that of exfoliated graphene. This paper offers a viable route toward the use of carbon-based materials for future transparent electrodes in III-nitride optoelectronics, such as GaN-based light emitting diodes and laser diodes. © 1988-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction between an 11 nm Ni(10 at.% Pt) film on a Si substrate has been examined by in situ X-ray diffraction (XRD), atom probe tomography (APT) and transmission electron microscopy (TEM). In situ XRD experiments show the unusual formation of a phase without an XRD peak through consumption of the metal. According to APT, this phase has an Si concentration gradient in accordance with the θ-Ni2Si metastable phase. TEM analysis confirms the direct formation of θ-Ni2Si in epitaxy on Si(1 0 0) with two variants of the epitaxial relationship. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.