62 resultados para Deutschland (Submarine)
Resumo:
This paper investigates the use of inertial actuators to reduce the sound radiated by a submarine hull under excitation from the propeller. The axial forces from the propeller are tonal at the blade passing frequency. The hull is modeled as a fluid-loaded cylindrical shell with ring stiffeners and equally spaced bulkheads. The cylinder is closed at each end by circular plates and conical end caps. The forces from the propeller are transmitted to the hull by a rigid foundation connected to the propeller shaft. Inertial actuators are used as the structural control inputs. The actuators are arranged in circumferential arrays and attached to the internal end plates of the hull. Two active control techniques corresponding to active vibration control and discrete structural acoustic sensing are implemented to attenuate the structural and acoustic responses of the submarine. In the latter technique, error information on the radiated sound fields is provided by a discrete structural acoustic sensor. An acoustic transfer function is defined to estimate the far field sound pressure from a single point measurement on the hull. The inertial actuators are shown to provide control forces with a magnitude large enough to reduce the sound due to hull vibration. © 2012 American Society of Mechanical Engineers.
Resumo:
Landslides occur both onshore and offshore, however little attention has been given to offshore landslides (submarine landslides). The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. Submarine landslides have significant impacts and consequences on offshore and coastal facilities. This paper presents data from a series of centrifuge tests simulating submarine landslide flows on a very gentle slope. Experiments were conducted at different gravity levels to understand the scaling laws involved in simulating submarine landslide flows through centrifuge modelling. The slope was instrumented with miniature sensors for measurements of pore pressure beneath the flow. A series of digital cameras were used to capture the flow in flight. The results provide a better understanding of the scaling laws that needs to be adopted for centrifuge experiments involving submarine landslide flows and gives an insight into the flow mechanisms. © 2010 Taylor & Francis Group, London.
Resumo:
Interbedded layers of glacial deposits and marine or glacimarine clay layers are a common feature of offshore sediment. Typically, offshore marine clays are lightly overconsolidated sensitive clay. Some case histories on submarine landslides show that the slip surface passes through these marine clay layers. In this paper a model is proposed for post-peak strain softening behavior of marine sensitive clay. The slope failure mechanism is examined using the concept of shear band propagation. It is shown that shear band propagation and post-peak stress-strain behavior of clay layers are two major factors in submarine slope stability analysis. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
A design strategy in the propulsion system attachment to a submarine hull to minimise radiated noise
Resumo:
Vibration modes of a submerged hull are excited by fluctuating forces generated at the propeller and transmitted to the hull via the propeller-shafting system. The low frequency hull vibrational modes result in significant sound radiation. This work investigates the reduction of the far-field radiated sound pressure by optimising the connection point of the shafting system to the hull. The submarine hull is modelled as a fluid loaded cylindrical hull with truncated conical shells at each end. The propeller-shafting system consists of the propeller, shaft, thrust bearing and foundation, and is modelled in a modular approach using a combination of spring-mass-damper elements and continuous systems (beams, plates, shells). The foundation is attached to the stern side end plate of the hull, which is modelled as a circular plate coupled to an annular plate. By tuning the connection radius of the foundation to the end plate, the maximum radiated noise in a given frequency range can be minimised.
Resumo:
An inherent trade-off exists in simulation model development and employment: a trade-off between the level of detail simulated and the simulation models computational cost. It is often desirable to simulate a high level of detail to a high degree of accuracy. However, due to the nature of design optimisation, which requires a large number of design evaluations, the application of such simulation models can be prohibitively expensive. A induction motor modelling approache to reduce the computational cost while maintaining a high level of detail and accuracy in the final design is presented. © 2012 IEEE.
Resumo:
The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and "local" tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event. © 2006 Author(s). This work is licensed under a Creative Commons License.
Resumo:
Submarine landslides pose considerable hazards to coastal communities and offshore structures. The difficulty and cost of obtaining undisturbed samples of offshore soils for determining material properties required for slope stability analyses contribute to the complexity of the problem. There are significant advantages in using a simplified model for the seismic response of submarine slopes, compatible with the limited amount of information that can be realistically gathered, but still able to capture the key elements of clay behavior. This paper illustrates the process of parameter determination and calibration of the SIMPLE DSS model, developed for the study of seismic triggering of submarine slope instabilities. The selection of parameters and predictions of monotonic and cyclic simple shear response are carried out for Boston Blue Clay, a marine clay extensively studied and with a large experimental database available in the literature. The results show that the simplified model is able to reproduce the important trends in the response of the soil, especially in accounting for the effect of the slope.