105 resultados para Computer Modelling, Interstitial Fluid Flow, Transport Mechanism, Functional Adaptation
Resumo:
An overview of the physics of the interaction between sound and flames is presented. The flame dynamics are investigated through experiment and computer modelling. The complementary rôles of wave analysis, low-order models for unsteady combustion, Computational Fluid Dynamics and experiment are illustrated by examples of oscillations in gas turbine combustors and in generic premixed ducted flames. The potential for 'antisound' and passive acoustic absorbers to eliminate the instability is also discussed.
Resumo:
In order to improve drilling mud design to cater for specific well situations, a more comprehensive knowledge and understanding of filter cake failure is needed. This paper describes experimental techniques aimed at directly probing the mechanical properties of filter cakes, without having to take into account artefacts due to fluid flow in the substrate. The use of rheometers allows us to determine shear yield stress and dynamic shear modulii of cakes grown on filter paper. A new scraping technique measures the strength and moisture profiles of typical filter cakes with a 0.1 mm resolution. This technique also allows us to probe the adhesion between the filter cake and its rock substrate. In addition, œdometer drained consolidation and unloading of a filter cake give us compression parameters useful for Cam Clay modelling. These independent measurements give similar results as to the elastic modulus of different filter cakes, showing an order of magnitude difference between water based and oil based cakes. We find that these standard cakes behave predominantly as purely elastic materials, with a sharp transition into plastic flow, allowing for the determination of a well-defined yield stress. The effect ofsolids loading on a given type of mud is also studied.
Resumo:
Prandtl's secondary mean motions of the second kind near an undulating surface were explained in terms of turbulent blocking effect and kinematic boundary conditions at the surface, and its order of magnitude was estimated. Isotropic turbulence is distorted by the undulating surface of wavelength λ and amplitude h with a low slope, so that h « λ. The prime mechanism for generating the mean flow is that the far-field Isotropic turbulence is distorted by the non-local blocking effect of the surface to become anisotropic axisymmetric turbulence near the surface with principal axis that is not aligned with the local curvature of the undulation. Then the local analysis can be applied and the mechanism is similar to the mean flow generation mechanism for homogeneous axisymmetric turbulence over a planer surface, i.e. gradients of the Reynolds stress caused by the turbulent blocking effect generate the mean motions. The results from this simple analysis are consistent with previous exact analysis in which the effects of curvature are strictly taken into account. The results also qualitatively agree with flow visualization over an undulating surface in a mixing-box.
Resumo:
An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.
Resumo:
DNS of planar turbulent flame and turbulent V-flame has been conducted to investigate turbulence-scalar interaction in relatively practical turbulent combustion. Several turbulence quantities are examined for the understandings of fundamental characteristics of flow field in V-flame. Due to the additional turbulence production by the hot-rod, turbulence does not simply decay in V-flame. Turbulence-scalar interaction, scalar alignments with the principal strain rate in other words, is then clarified. The competition of turbulence and dilatation can be found in the conditional PDF of flame normal alignment. The results suggests that the alignment characteristics in high Da flames are applicable to low Da flames in the region of intense heat release.
Resumo:
Natural cilia are hairlike microtubule-based structures that are able to move fluid on the micrometer scale using asymmetric motion. In this article, we follow a biomimetic approach to design artificial cilia lining the inner surfaces of microfluidic channels with the goal of propelling fluid. The artificial cilia consist of polymer films filled with superparamagnetic nanoparticles, which can mimic the motion of natural cilia when subjected to a rotating magnetic field. To obtain the magnetic field and associated magnetization local to the cilia, we solve the Maxwell equations, from which the magnetic body moments and forces can be deduced. To obtain the ciliary motion, we solve the dynamic equations of motion, which are then fully coupled to the Navier-Stokes equations that describe the fluid flow around the cilia, thus taking full account of fluid inertial forces. The dimensionless parameters that govern the deformation behavior of the cilia and the associated fluid flow are arrived at using the principle of virtual work. The physical response of the cilia and the fluid flow for different combinations of elastic, fluid viscous, and inertia forces are identified.
Resumo:
A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The coupling between both models is performed by imposing no-slip boundary conditions on the surface of the cilia. The performance of the model is verified using various reference problems available in the literature. The model is used to simulate the fluid flow due to magnetically actuated artificial cilia. The results show that narrow and closely spaced cilia create the largest flow, that metachronal waves along the width of the cilia create a significant flow in the direction of the cilia width and that the recovery stroke in the case of the out-of-plane actuation of the cilia strongly depends on the cilia width. © 2012 Cambridge University Press.
Resumo:
We compare natural ventilation flows established by a range of heat source distributions at floor level. Both evenly distributed and highly localised line and point source distributions are considered. We demonstrate that modelling the ventilation flow driven by a uniformly distributed heat source is equivalent to the flow driven by a large number of localised sources. A model is developed for the transient flow development in a room with a uniform heat distribution and is compared with existing models for localised buoyancy inputs. For large vent areas the flow driven by localised heat sources reaches a steady state more rapidly than the uniformly distributed case. For small vent areas there is little difference in the transient development times. Our transient model is then extended to consider the time taken to flush a neutrally buoyant pollutant from a naturally ventilated room. Again comparisons are drawn between uniform and localised (point and line) heat source geometries. It is demonstrated that for large vent areas a uniform heat distribution provides the fastest flushing. However, for smaller vent areas, localised heat sources produce the fastest flushing. These results are used to suggest a definition for the term 'natural ventilation efficiency', and a model is developed to estimate this efficiency as a function of the room and heat source geometries. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the discs. As the radial location of the maximum disc temperature moves radially outward, this appears to increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions considered here). If the peripheral shroud is also heated there appear to be many radial arms which exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat transfer is also found to be influenced by the disc surface temperature distribution. It is also found that the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation found from previous experimental measurements. © 1994, MCB UP Limited.
Resumo:
Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.
Resumo:
The determination of lacunar-canalicular permeability is essential to understand the mechano-transduction mechanism of bone. Murine models are widely used to investigate skeletal growth and regulation, but the value of lacunar-canalicular permeability is still unclear. To address this question, a poroelastic analysis based on nanoindentation data was used to calculate the lacunar-canalicular permeability of wild type C57BL/6 mice of 12 months. Cross-sections of three tibiae were indented using spherical fluid cell indenter tips of two sizes. Results suggest that the value of lacunar-canalicular intrinsic permeability of B6 female murine tibia is in the order of 10 -24 m2. The distribution of the values of intrinsic permeability suggests that with larger contact sizes, nanoindentation alone is capable of capturing the multi-scale permeability of bone. Multi-scale permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. © 2013 American Society of Civil Engineers.