59 resultados para Component Declination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed. © 2010 Michel Journée, Yurii Nesterov, Peter Richtárik and Rodolphe Sepulchre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives a new algorithm that performs independent component analysis (ICA) by optimizing the contrast function of the RADICAL algorithm. The core idea of the proposed optimization method is to combine the global search of a good initial condition with a gradient-descent algorithm. This new ICA algorithm performs faster than the RADICAL algorithm (based on Jacobi rotations) while still preserving, and even enhancing, the strong robustness properties that result from its contrast. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA microarrays provide a huge amount of data and require therefore dimensionality reduction methods to extract meaningful biological information. Independent Component Analysis (ICA) was proposed by several authors as an interesting means. Unfortunately, experimental data are usually of poor quality- because of noise, outliers and lack of samples. Robustness to these hurdles will thus be a key feature for an ICA algorithm. This paper identifies a robust contrast function and proposes a new ICA algorithm. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 40% of annual demand for steel worldwide is used to replace products that have failed. With this percentage set to rise, extending the lifespan of steel in products presents a significant opportunity to reduce demand and thus decrease carbon dioxide emissions from steel production. This article presents a new, simplified framework with which to analyse product failure. When applied to the products that dominate steel use, this framework reveals that they are often replaced because a component/sub-assembly becomes degraded, inferior, unsuitable or worthless. In light of this, four products, which are representative of high steel content products in general, are analysed at the component level, determining steel mass and cost profiles over the lifespan of each product. The results show that the majority of the steel components are underexploited - still functioning when the product is discarded; in particular, the potential lifespan of the steel-rich structure is typically much greater than its actual lifespan. Twelve case studies, in which product or component life has been increased, are then presented. The resulting evidence is used to tailor life-extension strategies to each reason for product failure and to identify the economic motivations for implementing these strategies. The results suggest that a product template in which the long-lived structure accounts for a relatively high share of costs while short-lived components can be easily replaced (offering profit to the producer and enhanced utility to owners) encourages product life extension. © 2013 The Author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright © (2014) by the International Machine Learning Society (IMLS) All rights reserved. Classical methods such as Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) are ubiquitous in statistics. However, these techniques are only able to reveal linear re-lationships in data. Although nonlinear variants of PCA and CCA have been proposed, these are computationally prohibitive in the large scale. In a separate strand of recent research, randomized methods have been proposed to construct features that help reveal nonlinear patterns in data. For basic tasks such as regression or classification, random features exhibit little or no loss in performance, while achieving drastic savings in computational requirements. In this paper we leverage randomness to design scalable new variants of nonlinear PCA and CCA; our ideas extend to key multivariate analysis tools such as spectral clustering or LDA. We demonstrate our algorithms through experiments on real- world data, on which we compare against the state-of-the-art. A simple R implementation of the presented algorithms is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for studying the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and toughness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their singlecomponent counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Singlecomponent and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer concentration was demonstrated for all systems. Alginate hydrogels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhibited a combination of the mechanical properties of the constituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with M A≈1/2MB. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.