49 resultados para Cinemetry. Transcranial direct current stimulation. Motor control. Para-powerlifting
Resumo:
There is an increasing attention of exploiting compliant materials for the purpose of legged locomotion, because they provide significant advantages in locomotion performance with respect to energy efficiency and stability. Toward establishing a fundamental basis for this line of research, a minimalistic locomotion model of a single legged system is explored in this paper. By analyzing the dynamic behavior of the system in simulation and a physical robotic platform, it is shown that a stable locomotion process can be achieved without the necessity of sensory feedback. In addition, further analysis characterizes the relation between motor control and the natural body dynamics determined by morphological properties such as body mass and spring constant. © 2006 The authors.
Resumo:
It has been shown that sensory morphology and sensory-motor coordination enhance the capabilities of sensing in robotic systems. The tasks of categorization and category learning, for example, can be significantly simplified by exploiting the morphological constraints, sensory-motor couplings and the interaction with the environment. This paper argues that, in the context of sensory-motor control, it is essential to consider body dynamics derived from morphological properties and the interaction with the environment in order to gain additional insight into the underlying mechanisms of sensory-motor coordination, and more generally the nature of perception. A locomotion model of a four-legged robot is used for the case studies in both simulation and real world. The locomotion model demonstrates how attractor states derived from body dynamics influence the sensory information, which can then be used for the recognition of stable behavioral patterns and of physical properties in the environment. A comprehensive analysis of behavior and sensory information leads to a deeper understanding of the underlying mechanisms by which body dynamics can be exploited for category learning of autonomous robotic systems. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
A closed-loop control technique based on monitoring phase current risetime for switched reluctance (SR) motors without direct rotor-position sensors has been studied and implemented successfully. In this technique the variation in incremental phase inductance in a SR motor is used to detect rotor position. A control circuit for current-waveform-based rotor position detection has been implemented using hard-wire digital circuits. Torque-speed and system-efficiency characteristics resulting from the application of the method to a 4-kW, four-phase SR motor with an IGBT drive are presented.