56 resultados para COMPUTATIONAL NEURAL-NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of high-performance speech processing systems for low-resource languages is a challenging area. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to use bottleneck features, or hybrid systems, trained on multilingual data for speech-to-text (STT) systems. This paper presents an investigation into the application of these multilingual approaches to spoken term detection. Experiments were run using the IARPA Babel limited language pack corpora (∼10 hours/language) with 4 languages for initial multilingual system development and an additional held-out target language. STT gains achieved through using multilingual bottleneck features in a Tandem configuration are shown to also apply to keyword search (KWS). Further improvements in both STT and KWS were observed by incorporating language questions into the Tandem GMM-HMM decision trees for the training set languages. Adapted hybrid systems performed slightly worse on average than the adapted Tandem systems. A language independent acoustic model test on the target language showed that retraining or adapting of the acoustic models to the target language is currently minimally needed to achieve reasonable performance. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the architecture of a vector-matrix multiplier (MVM) is simulated. The optical design can be made compact by the use of GRIN lenses for the optical fan-in. The intended application area was in storage area networks (SANs) but the concept can be applied to a neural network. © 2011 Allerton Press, Inc.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The liquid-crystal light valve (LCLV) is a useful component for performing integration, thresholding, and gain functions in optical neural networks. Integration of the neural activation channels is implemented by pixelation of the LCLV, with use of a structured metallic layer between the photoconductor and the liquid-crystal layer. Measurements are presented for this type of valve, examples of which were prepared for two specific neural network implementations. The valve fabrication and measurement were carried out at the State Optical Institute, St. Petersburg, Russia, and the modeling and system applications were investigated at the Institute of Microtechnology, Neuchâtel, Switzerland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the non-parametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive distributions. We derive both efficient Markov chain Monte Carlo and variational Bayes inference procedures for this model. We apply GPRN as a multiple output regression and multivariate volatility model, demonstrating substantially improved performance over eight popular multiple output (multi-task) Gaussian process models and three multivariate volatility models on benchmark datasets, including a 1000 dimensional gene expression dataset.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. © 2012 Kadiallah et al.