49 resultados para CLASS DISCOVERY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of cryogenic technology and high temperature superconducting (HTS) materials has seen continued interest worldwide in the development of HTS machines since the late 1980s. In this paper, the authors present a conceptual design of a 2.5 MW class synchronous motor. The structure of the motor is specified and the motor performance is analyzed via a three-dimensional model using the finite element method (FEM). Rotor optimization is carried out to decrease the harmonic components in the air gap field generated by HTS tapes. Based on the results of this 3D simulation, the determination of the operating conditions and load angle is discussed with consideration to the HTS material properties. The economic viability of air-core and iron-core designs is compared. The results show that this type of HTS machine has the potential to achieve an economic, efficient and effective machine design, which operates at a low load angle, and this design process provides a practical way to simulate and analyze the performance of such machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses dissipativity theory to provide the system-theoretic description of a basic oscillation mechanism. Elementary input-output tools are then used to prove the existence and stability of limit cycles in these "oscillators". The main benefit of the proposed approach is that it is well suited for the analysis and design of interconnections, thus providing a valuable mathematical tool for the study of networks of coupled oscillators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to create high-value products for specialist applications, and the search for efficient forming routes that obviate the need for some machining steps, is driving Interest In a novel class of forming processes aiming to create locally thickened features within sheet work- pieces. A number of novel forming processes have been proposed to meet this need, but it is as yet unclear which processes will be most effective in creating local thickening of various geometries, and many process configurations have yet to be tried. This paper aims to provide some basic principles for designing and characterising process behaviour. A simplified generic description of sheet thickening processes is provided, with two tools of variable operating on a sheet workpiece in plane strain, with different tool separations and motions parameterised. A comprehensive numerical study of the behaviour of this class of processes is conducted in Abaqus to predict the main characteristics of the material flow in each configuration. The results are used to classify the different basic behaviours that can be achieved by the sheet-bulk thickening processes and to give guidance on future process development, capability and applicability. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.