77 resultados para Blocking oscillators
Resumo:
There has been much recent interest in engineering the phenomenon of synchronization in coupled micro-/nano-scale oscillators for applications ranging from precision time and frequency references to new approaches to information processing. This paper presents descriptive modelling detail and further experimental validation of the phenomenon of mutual synchronization in coupled MEMS oscillators building upon recent experimental validation of this concept by the present authors. In particular, the underlying dependence of the observation of synchronization on system parameters is studied through numerical and analytical modelling while considering essential nonlinearities in both the resonator and circuit domain. Experimental results demonstrating synchronized response are elaborated based on the realization of electrically coupled MEMS resonator based square-wave oscillators. The experimental results on frequency entrainment are found to be in general agreement with results obtained through analytical modeling and numerical simulation. The concept presented here is scalable and could be used to investigate the dynamics of large-arrays of coupled MEMS oscillators. © 2014 AIP Publishing LLC.
Resumo:
There is much to gain from providing walking machines with passive dynamics, e.g. by including compliant elements in the structure. These elements can offer interesting properties such as self-stabilization, energy efficiency and simplified control. However, there is still no general design strategy for such robots and their controllers. In particular, the calibration of control parameters is often complicated because of the highly nonlinear behavior of the interactions between passive components and the environment. In this article, we propose an approach in which the calibration of a key parameter of a walking controller, namely its intrinsic frequency, is done automatically. The approach uses adaptive frequency oscillators to automatically tune the intrinsic frequency of the oscillators to the resonant frequency of a compliant quadruped robot The tuning goes beyond simple synchronization and the learned frequency stays in the controller when the robot is put to halt. The controller is model free, robust and simple. Results are presented illustrating how the controller can robustly tune itself to the robot, as well as readapt when the mass of the robot is changed. We also provide an analysis of the convergence of the frequency adaptation for a linearized plant, and show how that analysis is useful for determining which type of sensory feedback must be used for stable convergence. This approach is expected to explain some aspects of developmental processes in biological and artificial adaptive systems that "develop" through the embodied system-environment interactions. © 2006 IEEE.
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
An investigation concerning suitable termination techniques for 4H-SiC trench JFETs is presented. Field plates, p+ floating rings and junction termination extension techniques are used to terminate 1.2kV class PiN diodes. The fabricated PiN diodes evaluated here have a similar design to trench JFETs. Therefore, the conclusions for PiN diodes can be applied to JFET structures as well. Numerical simulations are also used to illustrate the effect of the terminations on the diodes' blocking mode behaviour.
Resumo:
The acoustic response of conventional mechanical oscillators, such as a piezoelectric crystal, is predominantly harmonic at modest amplitudes. However, here, we observe from the electrical response that significant motional anharmonicity is introduced in the presence of attached analyte. Experiments were conducted with streptavidin-coated polystyrene microbeads of various sizes attached to a quartz crystal resonator via specific and nonspecific molecular tethers in liquid. Quantitative analysis reveals that the deviation of odd Fourier harmonics of the response caused by introduction of microbeads as a function of oscillation amplitude presents a unique signature of the molecular tether. Hence, the described anharmonic detection technique (ADT) based on this function allows screening of biomolecules and provides an additional level of selectivity in receptor-based detection that is often associated with nonspecific interactions. We also propose methods to extract mechanical force-extension characteristics of the molecular tether and activation energy using this technique.
Resumo:
MOS gated power devices are now available for power switching applications with voltage blocking requirements up to 1 kV and current ratings up to 300A. This is due to the invention of the IGBT, a device in which MOS gate turn-on leads to minority carrier injection to modulate the high resistance drift region required for voltage blocking. The paper presents current technologies being developed in order to expand the applications of MOS gated power devices. Also explained is the available trench gate technology that can be used to fabricate power devices.
Resumo:
Novel alternatives to the conventional single crystal diamond Schottky metal-intrinsic-p+ (m-i-p+) diode is presented in this work. The conduction mechanism of the device is analysed and structural modifications to enhance its performance are proposed. The periodic inclusion of highly p+ doped thin δ-layers and p+ spots in the intrinsic voltage blocking layer of the diode drastically improves the forward performance of these devices enhancing the forward current of the device by a factor of 10 - 17 with a maximum forward current density of ̃ 40 A/cm 2 for a 2 kV device.
Resumo:
Characterization of damping forces in a vibrating structure has long been an active area of research in structural dynamics. In spite of a large amount of research, understanding of damping mechanisms is not well developed. A major reason for this is that unlike inertia and stiffness forces it is not in general clear what are the state variables that govern the damping forces. The most common approach is to use `viscous damping' where the instantaneous generalized velocities are the only relevant state variables. However, viscous damping by no means the only damping model within the scope of linear analysis. Any model which makes the energy dissipation functional non-negative is a possible candidate for a valid damping model. This paper is devoted to develop methodologies for identification of such general damping models responsible for energy dissipation in a vibrating structure. The method uses experimentally identified complex modes and complex natural frequencies and does not a-priori assume any fixed damping model (eg., viscous damping) but seeks to determine parameters of a general damping model described by the so called `relaxation function'. The proposed method and several related issues are discussed by considering a numerical example of a linear array of damped spring-mass oscillators.
Resumo:
Technology roadmapping workshops are essentially a social mechanism for exploring, creating, shaping and implementing ideas. The front-end of a roadmapping session is based on brainstorming in order to tap into the group's diverse knowledge. The aim of this idea stimulation activity is to capture and share as many perspectives as possible across the full scope of the area of interest. The premise to such group brainstorming is that the sharing and exchange of ideas leads to cognitive stimulation resulting in a greater overall group idea generation performance in terms of the number, variety and originality of ideas. However, it must be recognized that the ideation stage in a roadmapping workshop is a complex psychosocial phenomenon with underlying cognitive and social processes. Thus, there are downsides to group interactions and these must be addressed in order to fully benefit from the power of a roadmapping workshop. This paper will highlight and discuss the key cognitive and social inhibitors involved. These include: production blocking, evaluation apprehension, free riding/social loafing, low norm setting/matching. Facilitation actions and process adjustments to counter such negative factors will be identified so as to provide a psychosocial basis for improving the running of roadmapping workshops. © 2009 PICMET.
Resumo:
The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.
Resumo:
Some of the earliest theoretical speculation, stimulated by the growth of semiconductor superlattices, focused on novel devices based on vertical transport through engineered band structures; Esaki and Tsu promised Bloch oscillators in narrow mini-band systems and Kazarinov and Suris contemplated electrically stimulated intersubband transitions as sources of infrared radiation. Nearly twenty years later these material systems have been perfected, characterized and understood and experiments are emerging that test some of these original concepts for novel submillimetre wave electronics. Here we describe recent experiments on intersubband emission in quantum wells stimulated by resonant tunnelling currents. A critical issue at this time is devising a way to achieve population inversion. Other experiments explore 'saturation' effects in narrow miniband transport. Thermal saturation may be viewed as a precursor to Bloch oscillation if the same effects can be induced with an applied electric field.
Resumo:
This technical note studies global asymptotic state synchronization in networks of identical systems. Conditions on the coupling strength required for the synchronization of nodes having a cyclic feedback structure are deduced using incremental dissipativity theory. The method takes advantage of the incremental passivity properties of the constituent subsystems of the network nodes to reformulate the synchronization problem as one of achieving incremental passivity by coupling. The method can be used in the framework of contraction theory to constructively build a contracting metric for the incremental system. The result is illustrated for a network of biochemical oscillators. © 2011 IEEE.
Resumo:
Powering electronics without depending on batteries is an open research field. Mechanical vibrations prove to be a reliable energy source, but low-frequency broadband vibrations cannot be harvested effectively using linear oscillators. This article discusses an alternative for harvesting such vibrations, with energy harvesters with two stable configurations. The challenges related to nonlinear dynamics are briefly discussed. Different existing designs of bistable energy harvesters are presented and classified, according to their feasibility for miniaturization. A general dynamic model for those designs is described. Finally, an extensive discussion on quantitative measures of evaluating the effectiveness of energy harvesters is accomplished, resulting in the proposition of a new dimensionless metric suited for a broadband analysis.