72 resultados para Bipolar Affective-disorder
Resumo:
The IGBT has become the device of choice in many high-voltage-power electronic applications, by virtue of combining the ease of MOS gate control with an acceptable forward voltage drop. However, designers have retained an interest in MOS gated thyristor structures which have a turn-off capability. These offer low on-state losses as a result of their latching behaviour. Recently, there have been various proposals for dual-gate devices that have a thyristor on-state with IGBT-like switching. Many of these dual gated structures rely on advanced MOS technology, with inherent manufacturing difficulties. The MOS and bipolar gated thyristor offers all the advantages of dual gated performance, while employing standard IGBT processing techniques. The paper describes the MBGT in detail, and presents experimental and simulation results for devices based on realistic commercial processes. It is shown that the MBGT represents a viable power semiconductor device technology, suitable for a diverse range of applications. © IEE, 1998.
Resumo:
Hydrogenated tetrahedral amorphous carbon (ta-C:H) is a form of diamond-like carbon with a high sp3 content (>60%), grown here using a plasma beam source. Information on the behaviour of hydrogen upon annealing is obtained from effusion measurements, which show that hydrogen does not effuse significantly at temperatures less than 500 °C in films grown using methane and 700 °C in films grown using acetylene. Raman measurements show no significant structural changes at temperatures up to 300 °C. At higher temperatures, corresponding to the onset of effusion, the Raman spectra show a clustering of the sp2 phase. The density of states of ta-C:H is directly measured using scanning tunnelling spectroscopy. The measured gradients of the conduction and valence band tails increase up to 300 °C, confirming the occurrence of band tail sharpening. Examination of the photoluminescence background in the Raman spectra shows an increase in photoluminescence intensity with decreasing defect density, providing evidence that paramagnetic defects are the dominant non-radiative recombination centres in ta-C:H.