51 resultados para Bimodal oscillation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Screech is a high frequency oscillation that is usually characterized by instabilities caused by large-scale coherent flow structures in the wake of bluff-body flameholders and shear layers. Such oscillations can lead to changes in flame surface area which can cause the flame to burn unsteadily, but also couple with the acoustic modes and inherent fluid-mechanical instabilities that are present in the system. In this study, the flame response to hydrodynamic oscillations is analyzed in a controlled manner using high-fidelity Computational Fluid Dynamics (CFD) with an unsteady Reynolds-averaged Navier-Stokes approach. The response of a premixed flame with and without transverse velocity forcing is analyzed. When unforced, the flame is shown to exhibit a self-excitation that is attributed to the anti-symmetric shedding of vortices in the wake of the flameholder. The flame is also forced using two different kinds of low-amplitude out-of-phase inlet velocity forcing signals. The first forcing method is harmonic forcing with a single characteristic frequency, while the second forcing method involves a broadband forcing signal with frequencies in the range of 500 - 1000 Hz. For the harmonic forcing method, the flame is perturbed only lightly about its mean position and exhibits a limit cycle oscillation that is characteristic of the forcing frequency. For the broadband forcing method, larger changes in the flame surface area and detachment of the flame sheet can be seen. Transition to a complicated trajectory in the phase space is observed. When analyzed systematically with system identification methods, the CFD results, expressed in the form of the Flame Transfer Function (FTF) are capable of elucidating the flame response to the imposed perturbation. The FTF also serves to identify, both spatially and temporally, regions where the flame responds linearly and nonlinearly. Locking-in between the flame's natural self-excited frequency and the subharmonic frequencies of the broadband forcing signal is found to alter the dynamical behaviour of the flame. Copyright © 2013 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of a class of combustion systems, suceptible to damage from self-excited combustion oscillations, is considered. An adaptive stable controller, called Self-Tuning Regulator (STR), has recently been developed, which meets the apparently contradictory challenge of relying as little as possible on a particular combustion model while providing some guarantee that the controller will cause no harm. The controller injects some fuel unsteadily into the burning region, thereby altering the heat release, in response to an input signal detecting the oscillation. This paper focuses on an extension of the STR design, when, due to stringent emission requirements and to the danger of flame extension, the amount of fuel used for control is limited in amplitude. A Lyapunov stability analysis is used to prove the stability of the modified STR when the saturation constraint is imposed. The practical implementation of the modified STR remains straightforward, and simulation results, based on the nonlinear premixed flame model developed by Dowling, show that in the presence of a saturation constraint, the self-excited oscillations are damped more rapidly with the modified STR than with the original STR. © 2001 by S. Evesque. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the "phase locking" mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain. © 2010 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study extends our earlier investigation on the real-time dynamics of print gap airflow around a single jetted drop over a moving substrate. In the present work, simulated web press printing was performed using a stationary grey-scale commercial inkjet print head to print full-width block of solid colour images onto a paper substrate with extended print gaps. The resultant printed images exhibit patterns or 'wood-graining' effects which become more prevalent as the relevant Reynolds number (Re) increases. The high-resolution scans of the printed images revealed that the patterns are created by oscillation and coalescence of neighboring printed tracks across the web. The phenomenon could be a result of drop stream perturbations caused by unsteady print gap airflow of the type similar to that observed in the previous study. ©2013; Society for Imaging Science and Technology.