65 resultados para Arbitrary primers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reworks and amplifies Reichert's proof of his theorem (1969) which asserts that any impedance function of a one-port electrical network which can be realised with two reactive elements and an arbitrary number of resistors can be realised with two reactive elements and three resistors. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Work presented in this paper studies the potential of employing inerters -a novel mechanical device used successfully in racing cars- in active suspension configurations with the aim to enhance railway vehicle system performance. The particular element of research in this paper concerns railway wheelset lateral stability control. Controlled torques are applied to the wheelsets using the concept of absolute stiffness. The effects of a reduced set of arbitrary passive structures using springs, dampers and inerters integrated to the active solution are discussed. A multi-objective optimisation problem is defined for tuning the parameters of the proposed configurations. Finally, time domain simulations are assessed for the railway vehicle while negotiating a curved track. A simplification of the design problem for stability is attained with the integration of inerters to the active solutions. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual information is difficult to search and interpret when the density of the displayed information is high or the layout is chaotic. Visual information that exhibits such properties is generally referred to as being "cluttered." Clutter should be avoided in information visualizations and interface design in general because it can severely degrade task performance. Although previous studies have identified computable correlates of clutter (such as local feature variance and edge density), understanding of why humans perceive some scenes as being more cluttered than others remains limited. Here, we explore an account of clutter that is inspired by findings from visual perception studies. Specifically, we test the hypothesis that the so-called "crowding" phenomenon is an important constituent of clutter. We constructed an algorithm to predict visual clutter in arbitrary images by estimating the perceptual impairment due to crowding. After verifying that this model can reproduce crowding data we tested whether it can also predict clutter. We found that its predictions correlate well with both subjective clutter assessments and search performance in cluttered scenes. These results suggest that crowding and clutter may indeed be closely related concepts and suggest avenues for further research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ideally, one would like to perform image search using an intuitive and friendly approach. Many existing image search engines, however, present users with sets of images arranged in some default order on the screen, typically the relevance to a query, only. While this certainly has its advantages, arguably, a more flexible and intuitive way would be to sort images into arbitrary structures such as grids, hierarchies, or spheres so that images that are visually or semantically alike are placed together. This paper focuses on designing such a navigation system for image browsers. This is a challenging task because arbitrary layout structure makes it difficult - if not impossible - to compute cross-similarities between images and structure coordinates, the main ingredient of traditional layouting approaches. For this reason, we resort to a recently developed machine learning technique: kernelized sorting. It is a general technique for matching pairs of objects from different domains without requiring cross-domain similarity measures and hence elegantly allows sorting images into arbitrary structures. Moreover, we extend it so that some images can be preselected for instance forming the tip of the hierarchy allowing to subsequently navigate through the search results in the lower levels in an intuitive way. Copyright 2010 ACM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a method for the linear analysis of the stiffness and strength of open and closed cell lattices with arbitrary topology. The method hinges on a multiscale approach that separates the analysis of the lattice in two scales. At the macroscopic level, the lattice is considered as a uniform material; at the microscopic scale, on the other hand, the cell microstructure is modelled in detail by means of an in-house finite element solver. The method allows determine the macroscopic stiffness, the internal forces in the edges and walls of the lattice, as well as the global periodic buckling loads, along with their buckling modes. Four cube-based lattices and nine cell topologies derived by Archimedean polyhedra are studied. Several of them are characterized here for the first time with a particular attention on the role that the cell wall plays on the stiffness and strength properties. The method, automated in a computational routine, has been used to develop material property charts that help to gain insight into the performance of the lattices under investigation. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a multiscale procedure for the linear analysis of components made of lattice materials. The method allows the analysis of both pin-jointed and rigid-jointed microtruss materials with arbitrary topology of the unit cell. At the macroscopic level, the procedure enables to determine the lattice stiffness, while at the microscopic level the internal forces in the lattice elements are expressed in terms of the macroscopic strain applied to the lattice component. A numeric validation of the method is described. The procedure is completely automated and can be easily used within an optimization framework to find the optimal geometric parameters of a given lattice material. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fundamental aim of clustering algorithms is to partition data points. We consider tasks where the discovered partition is allowed to vary with some covariate such as space or time. One approach would be to use fragmentation-coagulation processes, but these, being Markov processes, are restricted to linear or tree structured covariate spaces. We define a partition-valued process on an arbitrary covariate space using Gaussian processes. We use the process to construct a multitask clustering model which partitions datapoints in a similar way across multiple data sources, and a time series model of network data which allows cluster assignments to vary over time. We describe sampling algorithms for inference and apply our method to defining cancer subtypes based on different types of cellular characteristics, finding regulatory modules from gene expression data from multiple human populations, and discovering time varying community structure in a social network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, labon- a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1,2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. © 2012 Journal of Visualized Experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a method for approximate inference in hidden Markov models (HMMs). The method circumvents the need to evaluate conditional densities of observations given the hidden states. It may be considered an instance of Approximate Bayesian Computation (ABC) and it involves the introduction of auxiliary variables valued in the same space as the observations. The quality of the approximation may be controlled to arbitrary precision through a parameter ε > 0. We provide theoretical results which quantify, in terms of ε, the ABC error in approximation of expectations of additive functionals with respect to the smoothing distributions. Under regularity assumptions, this error is, where n is the number of time steps over which smoothing is performed. For numerical implementation, we adopt the forward-only sequential Monte Carlo (SMC) scheme of [14] and quantify the combined error from the ABC and SMC approximations. This forms some of the first quantitative results for ABC methods which jointly treat the ABC and simulation errors, with a finite number of data and simulated samples. © Taylor & Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs. © 2011 Massachusetts Institute of Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning rules emerge from a policy gradient approach depending on which features of the spike trains are assumed to influence the reward signals, i.e., depending on which neural code is in effect. We use the framework of Williams (1992) to derive learning rules for arbitrary neural codes. For illustration, we present policy-gradient rules for three different example codes - a spike count code, a spike timing code and the most general "full spike train" code - and test them on simple model problems. In addition to classical synaptic learning, we derive learning rules for intrinsic parameters that control the excitability of the neuron. The spike count learning rule has structural similarities with established Bienenstock-Cooper-Munro rules. If the distribution of the relevant spike train features belongs to the natural exponential family, the learning rules have a characteristic shape that raises interesting prediction problems.