100 resultados para Applied Collaboration


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annealing of ion implantation damage in silicon by rapid isothermal heating has been monitored by the time resolved reflectivity (TRR) method. This technique was applied simultaneously at a wavelength of 632. 8nm and also at 1152nm, where the optical absorption coefficient of silicon is less. The two wavelength method simplifies the interpretation of TRR results, extends the measurement depth and allows good resolution of the position of the interface between amorphous and crystalline silicon. The regrowth of amorphous layers in silicon, created by self implantation and implanted with electrically active impurities, was observed. Regrowth in rapid isothermal annealing occurs during the heating up stage of typical thermal cycles. Impurities such as B, P, and As increase the regrowth rate in a manner consistent with a vacancy model for regrowth. The maximum regrowth rate in boron implanted silicon is limited by the solid solubility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions for a 75x205mm surface semi-elliptic defect in the NESC-1 spinning cylinder test have been made using BS PD 6493:1991, the R6 procedure, non-linear cracked body finite element analysis techniques and the local approach to fracture. All the techniques agree in predicting ductile tearing near the inner surface of the cylinder followed by cleavage initiation. However they differ in the amount of ductile tearing, and the exact location and time of any cleavage event. The amount of ductile tearing decreases with increasing sophistication in the analysis, due to the drop in peak crack driving force and more explicit consideration of constraint effects. The local approach predicts a high probability of cleavage in both HAZ and base material after 190s, while the other predictions suggest that cleavage is unlikely in the HAZ due to constraint loss, but likely in the underlying base material. The timing of this event varies from ∼150s for R6 predictions to ∼250-300s using non-linear cracked body analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-dimensional combustion code implementing the Conditional Moment Closure turbulent combustion model interfaced with a well-established RANS two- phase flow field solver has been employed to study a broad range of operating conditions for a heavy duty direct-injection common-rail Diesel engine. These conditions include different loads (25%, 50%, 75% and full load) and engine speeds (1250 and 1830 RPM) and, with respect to the fuel path, different injection timings and rail pressures. A total of nine cases have been simulated. Excellent agreement with experimental data has been found for the pressure traces and the heat release rates, without adjusting any model constants. The chemical mechanism used contains a detailed NOx sub-mechanism. The predicted emissions agree reasonably well with the experimental data considering the range of operating points and given no adjustments of any rate constants have been employed. In an effort to identify CPU cost reduction potential, various dimensionality reduction strategies have been assessed. Furthermore, the sensitivity of the predictions with respect to resolution in particular relating to the CMC grid has been investigated. Overall, the results suggest that the presented modelling strategy has considerable predictive capability concerning Diesel engine combustion without requiring model constant calibration based on experimental data. This is true particularly for the heat release rates predictions and, to a lesser extent, for NOx emissions where further progress is still necessary. © 2009 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.