60 resultados para Angle variables


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An existing driver-vehicle model with neuromuscular dynamics is improved in the areas of cognitive delay, intrinsic muscle dynamics and alpha-gamma co-activation. The model is used to investigate the influence of steering torque feedback and neuromuscular dynamics on the vehicle response to lateral force disturbances. When steering torque feedback is present, it is found that the longitudinal position of the lateral disturbance has a significant influence on whether the drivers reflex response reinforces or attenuates the effect of the disturbance. The response to angle and torque overlay inputs to the steering system is also investigated. The presence of the steering torque feedback reduced the disturbing effect of torque overlay and angle overlay inputs. Reflex action reduced the disturbing effect of a torque overlay input, but increased the disturbing effect of an angle overlay input. Experiments on a driving simulator showed that measured handwheel angle response to an angle overlay input was consistent with the response predicted by the model with reflex action. However, there was significant intra-and inter-subject variability. The results highlight the significance of a drivers neuromuscular dynamics in determining the vehicle response to disturbances. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-stepping finite element analysis of the BDFM for a specific load condition is shown to be a challenging problem because the excitation required cannot be predetermined and the BDFM is not open loops stable for all operating conditions. A simulation approach using feedback control to set the torque and stabilise the BDFM is presented together with implementation details. The performance of the simulation approach is demonstrated with an example and computed results are compared with measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their potential for significant fuel consumption savings, Counter-Rotating Open Rotors (CRORs) are currently being considered as an alternative to high-bypass turbofans. When CRORs are mounted on an aircraft, several 'installation effects' arise which are not present when the engine is operated in isolation. This paper investigates how flow features arising from one such effect - The angle-of-attack of the engine centre-line relative to the oncoming flow - can influence the design of CROR engines. Three-dimensional full-annulus unsteady CFD simulations are used to predict the time-varying flow field experienced by each rotor and emphasis is put on the interaction of the frontrotor wake and tip vortex with the rear-rotor. A parametric study is presented that quantifies the rotorrotor interaction as a function of the angle-of-attack. It is shown that angle-of-attack operation significantly changes the flow field and the unsteady lift on both rotors. In particular, a frequency analysis shows that the unsteady lift exhibits sidebands around the rotor-rotor interaction frequencies. Further, a non-linear increase in the total rear-rotor tip unsteadiness is observed for moderate and high angles-of-attack. The results presented in this paper demonstrate that common techniques used to mitigate CROR noise, such as modifying the rotor-rotor axial spacing and rear-rotor crop, can not be applied correctly unless angle-of-attack effects are taken into account. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report passive mode-locking of an Er-doped fiber laser using carbon nanotubes deposited on the facet of a right-angle optical waveguide. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A design methodology is presented for turbines in an annulus with high end wall angles. Such stages occur where large radial offsets between the stage inlet and stage outlet are required, for example in the first stage of modern low pressure turbines, and are becoming more prevalent as bypass ratios increase. The turbine vanes operate within s-shaped ducts which result in meridional curvature being of a similar magnitude to the bladeto-blade curvature. Through a systematic series of idealized computational cases, the importance of two aspects of vane design are shown. First, the region of peak end wall meridional curvature is best located within the vane row. Second, the vane should be leant so as to minimize spanwise variations in surface pressure-this condition is termed "ideal lean." This design philosophy is applied to the first stage of a low pressure turbine with high end wall angles. © 2014 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of a turbine stage featuring very high end wall angles is presented. The initial turbine design did not achieve a satisfactory performance and the difference between the design predictions and the test results was traced to a large separated region on the rear suction-surface. To improve the agreement between computational fluid dynamics (CFD) and experiment, it was found necessary to modify the turbulence modeling employed. The modified CFD code was then used to redesign the vane, and the changes made are described. When tested, the performance of the redesigned vane was found to have much closer agreement with the predictions than the initial vane. Finally, the flowfield and performance of the redesigned stage are compared to a similar turbine, designed to perform the same duty, which lies in an annulus of moderate end wall angles. A reduction in stage efficiency of at least 2.4% was estimated for the very high end wall angle design. © 2014 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate how a prior assumption of smoothness can be used to enhance the reconstruction of free energy profiles from multiple umbrella sampling simulations using the Bayesian Gaussian process regression approach. The method we derive allows the concurrent use of histograms and free energy gradients and can easily be extended to include further data. In Part I we review the necessary theory and test the method for one collective variable. We demonstrate improved performance with respect to the weighted histogram analysis method and obtain meaningful error bars without any significant additional computation. In Part II we consider the case of multiple collective variables and compare to a reconstruction using least squares fitting of radial basis functions. We find substantial improvements in the regimes of spatially sparse data or short sampling trajectories. A software implementation is made available on www.libatoms.org.