65 resultados para Alkali-Silicate reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 °C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N2. Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 1022 cm-3) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural properties and the room temperature luminescence of Er 2O3 thin films deposited by magnetron sputtering have been studied. In spite of the well-known high reactivity of rare earth oxides towards silicon, films characterized by good morphological properties have been obtained by using a SiO2 interlayer between the film and the silicon substrate. The evolution of the properties of the Er2O3 films due to thermal annealing processes in oxygen ambient performed at temperatures in the range of 800-1200°C has been investigated in detail. The existence of well defined annealing conditions (rapid treatments at a temperature of 1100°C or higher) allowing to avoid the occurrence of extensive chemical reactions with the oxidized substrate has been demonstrated; under these conditions, the thermal process has a beneficial effect on both structural and optical properties of the film, and an increase of the photoluminescence (PL) intensity by about a factor of 40 with respect to the as-deposited material has been observed. The enhanced efficiency of the photon emission process has been correlated with the longer lifetime of the PL signal. Finally, the conditions leading to a reaction of Er2O3 with the substrate have been also identified, and evidences about the formation of silicate-like phases have been collected. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of biochemical reaction networks (BRN) and genetic regulatory networks (GRN) in particular is a central topic in systems biology which raises crucial theoretical challenges in system identification. Nonlinear Ordinary Differential Equations (ODEs) that involve polynomial and rational functions are typically used to model biochemical reaction networks. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data quite difficult. In this paper, we present a network reconstruction algorithm that can deal with ODE model descriptions containing polynomial and rational functions. Rather than identifying the parameters of linear or nonlinear ODEs characterised by pre-defined equation structures, our methodology allows us to determine the nonlinear ODEs structure together with their associated parameters. To solve the network reconstruction problem, we cast it as a compressive sensing (CS) problem and use sparse Bayesian learning (SBL) algorithms as a computationally efficient and robust way to obtain its solution. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing interest in innovative reactors and advanced fuel cycle designs requires more accurate prediction of various transuranic actinide concentrations during irradiation or following discharge because of their effect on reactivity or spent-fuel emissions, such as gamma and neutron activity and decay heat. In this respect, many of the important actinides originate from the 241Am(n,γ) reaction, which leads to either the ground or the metastable state of 242Am. The branching ratio for this reaction depends on the incident neutron energy and has very large uncertainty in the current evaluated nuclear data files. This study examines the effect of accounting for the energy dependence of the 241Am(n,γ) reaction branching ratio calculated from different evaluated data files for different reactor and fuel types on the reactivity and concentrations of some important actinides. The results of the study confirm that the uncertainty in knowing the 241Am(n,γ) reaction branching ratio has a negligible effect on the characteristics of conventional light water reactor fuel. However, in advanced reactors with large loadings of actinides in general, and 241Am in particular, the branching ratio data calculated from the different data files may lead to significant differences in the prediction of the fuel criticality and isotopic composition. Moreover, it was found that neutron energy spectrum weighting of the branching ratio in each analyzed case is particularly important and may result in up to a factor of 2 difference in the branching ratio value. Currently, most of the neutronic codes have a single branching ratio value in their data libraries, which is sometimes difficult or impossible to update in accordance with the neutron spectrum shape for the analyzed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of magnesium silicate hydrate (MSH), which has wide applications in both construction and environmental fields, has been studied for decades. However, it is known that the characteristics of magnesia (MgO) vary significantly depending on their calcination conditions, which is expected to affect their performance in the MgO-SiO2-H2O system. This paper investigated the effect of different MgO and silica sources on the formation of magnesium silicate hydrate (MSH) at room temperature. The hydration process was studied by mixing commercial reactive MgO and silica powders with water and curing for 1, 7 and 28 days. The hydration products were analysed with the help of X-ray diffraction (XRD) and thermogravimatric analysis (TGA). The results showed the continuous consumption of MgO and the existence of MSH and brucite and other minor phases such as magnesite and calcite. It is found that the Mg and Si sources have significant effect on the hydration process of MgO-SiO2-H2O system. The reaction degree is controlled by the availability of dissolved Mg and Si in the solution. The former is determined by the reactivity of MgO and the latter is related to the reactivity of the silica as well as the pH of the system. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistically planar turbulent partially premixed flames for different initial intensities of decaying turbulence have been simulated for global equivalence ratios = 0.7 and 1.0 using three-dimensional, simplified chemistry-based direct numerical simulations (DNS). The simulation parameters are chosen such that the flames represent the thin reaction zones regime combustion. A random bimodal distribution of equivalence ratio is introduced in the unburned gas ahead of the flame to account for the mixture inhomogeneity. The results suggest that the probability density functions (PDFs) of the mixture fraction gradient magnitude |Δξ| (i.e., P(|Δξ|)) can be reasonably approximated using a log-normal distribution. However, this presumed PDF distribution captures only the qualitative nature of the PDF of the reaction progress variable gradient magnitude |Δc| (i.e., P(|Δc|)). It has been found that a bivariate log-normal distribution does not sufficiently capture the quantitative behavior of the joint PDF of |Δξ| and |Δc| (i.e., P(|Δξ|, |Δc|)), and the agreement with the DNS data has been found to be poor in certain regions of the flame brush, particularly toward the burned gas side of the flame brush. Moreover, the variables |Δξ| and |Δc| show appreciable correlation toward the burned gas side of the flame brush. These findings are corroborated further using a DNS data of a lifted jet flame to study the flame geometry dependence of these statistics. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction, the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss." This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2014 by ASME.