70 resultados para ATOMIC-FORCE MICROSCOPE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

When two rough surfaces are loaded together it is well known that the area of true contact is very much smaller then the geometric area and that, consequently, local contact pressures are very much greater than the nominal value. If the asperities on each surface can be thought of as possessing smooth summits and each of the solids is elastically isotropic then the pressure distribution will consist of a series of small, but severe, Hertzian patches. However, if one of both of the surfaces in question is protected by a boundary layer then both the number and dimensions of these patches, and the form of the pressure distribution within them, will be modified. Recent experimental evidence from studies using both Atomic Force Microscopy and micro-tribometry suggests that boundary films produced by the action of commercial anti-wear additives, such as ZDTP, exhibit mechanical properties, which are affected by local values of pressure. These changes bring about further modifications to local conditions. These effects have been explored in a numerical model of rough surface contact and the implications for the mechanisms of surface distress and wear are discussed. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ultrasmoothness of diamond-like carbon coatings is explained by an atomistic/continuum multiscale model. At the atomic scale, carbon ion impacts induce downhill currents in the top layer of a growing film. At the continuum scale, these currents cause a rapid smoothing of initially rough substrates by erosion of hills into neighboring hollows. The predicted surface evolution is in excellent agreement with atomic force microscopy measurements. This mechanism is general, as shown by similar simulations for amorphous silicon. It explains the recently reported smoothing of multilayers and amorphous transition metal oxide films and underlines the general importance of impact-induced downhill currents for ion deposition, polishing, and nanopattering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brittleness is the unintended, but inevitable consequence of producing a transparent ceramic for architectural applications such as the soda-lime glass. Its tensile strength is particularly sensitive to surface imperfections, such as that from natural weathering and malicious damage. Although a significant amount of testing of new glass has been carried out, there has been surprisingly little testing on weathered glass. Due to the variable nature of the causes of surface damage, the lack of data on weathered glass leads to a considerable degree of uncertainty in the long-term strength of exposed glass. This paper presents the results of recent tests on weathered annealed glass which has been exposed to natural weathering for more than 20 years. The tests include experimental investigations using the co-axial ring setup as well as optical and atomic force microscopy of the glass surfaces. The experimental data from these tests is subsequently used to extend existing fracture mechanics-based models to predict the strength of weathered glass. It is shown that using an automated approach based directly on finite element analysis results can give an increase in effective design strength in the order of 70 to 100% when compared to maximum stress methods. It is also shown that by combining microscopy and strength test results, it is possible to quantitatively characterise the damage on glass surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNTinorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O 3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Lowloss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Currentvoltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectriccarbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. © 2012 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp 2 hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene) and up to 13 of electric-field effect. The Hall mobility is ∼40 cm 2/Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain size ∼10 nm. The absence of transfer to another substrate allows avoidance of wrinkles, holes, and etching residues which are usually detrimental to device performance. This work provides a broader perspective of graphene CVD and shows a viable route toward applications involving transparent electrodes. © 2012 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural and optical properties of trench defects, which are poorly understood yet commonly occurring defects observed on the surfaces of InGaN multiple quantum wells (MQW), are reported. These defects comprise near-circular trenches which enclose areas of MQW which give rise to a red shift in peak photoluminescence emission and a change in cathodoluminescence intensity with respect to the surrounding material. Atomic force microscopy shows that the height of trench-enclosed areas differs from that of the surrounding quantum well structure, and that trenches are unrelated to the commonly observed V-defects in InGaN films, despite being occasionally intersected by them. Cross-sectional electron microscopy analysis of trenches with raised centres suggests that the red shift in the observed cathodoluminescence peak emission may be due to the quantum wells being thicker in the trench-enclosed regions than in the surrounding quantum well area. The mechanism of trench formation and its implication for the control of the emission properties of light-emitting diodes is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with cathodoluminescence (CL) were performed on exactly the same defects in a blue-emitting InGaN/GaN multiple quantum well (QW) sample enabling the direct correlation of the morphology of an individual defect with its emission properties. The defects in question are observed in AFM and SEM as a trench partially or fully enclosing a region of the QW having altered emission properties. Their sub-surface structure has previously been shown to consist of a basal plane stacking fault (BSF) in the plane of the QW stack, and a stacking mismatch boundary (SMB) which opens up into a trench at the sample surface. In CL, the material enclosed by the trench may emit more or less intensely than the surrounding material, but always exhibits a redshift relative to the surrounding material. A strong correlation exists between the width of the trench and both the redshift and the intensity ratio, with the widest trenches surrounding regions which exhibit the brightest and most redshifted emission. Based on studies of the evolution of the trench width with the number of QWs from four additional MQW samples, we conclude that in order for a trench defect to emit intense, strongly redshifted light, the BSF must be formed in the early stages of the growth of the QW stack. The data suggest that the SMB may act as a non-radiative recombination center. © 2013 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoindentation is ideal for the characterization of inhomogeneous biological materials. However, the use of nanoindentation techniques in biological systems is associated with some distinctively different techniques and challenges. For example, engineering materials used in the microelectronics industry (e.g. ceramics and metals) for which the technique was developed, are relatively stiff and exhibit time-independent mechanical responses. Biological materials, on the other hand, exhibit time-dependent behavior, and can span a range of stiffness regimes from moduli of Pa to GPa - eight to nine orders of magnitude. As such, there are differences in the selection of instrumentation, tip geometry, and data analysis in comparison with the "black box" nanoindentation techniques as sold by commercial manufacturers. The use of scanning probe equipment (atomic force miscroscopy) is also common for small-scale indentation of soft materials in biology. The book is broadly divided into two parts. The first part presents the "basic science" of nanoindentation including the background of contact mechanics underlying indentation technique, and the instrumentation used to gather mechanical data. Both the mechanics background and the instrumentation overview provide perspectives that are optimized for biological applications, including discussions on hydrated materials and adaptations for low-stiffness materials. The second part of the book covers the applications of nanoindentation technique in biological materials. Included in the coverage are mineralized and nonmineralized tissues, wood and plant tissues, tissue-engineering substitute materials, cells and membranes, and cutting-edge applications at molecular level including the use of functionalized tips to probe specific molecular interactions (e.g. the ligand-receptor binding). The book concludes with a concise summary and an insightful forecast of the future highlighting the current challenges. © 2011 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A synthetic strategy for fabricating a dense amine functionalized self-assembled monolayer (SAM) on hydroxylated surfaces is presented. The assembly steps are monitored by X-ray photoelectron spectroscopy, Fourier transform infrared- attenuated total reflection, atomic force microscopy, variable angle spectroscopic ellipsometry, UV-vis surface spectroscopy, contact angle wettability, and contact potential difference measurements. The method applies alkylbromide-trichlorosilane for the fabrication of the SAM followed by surface transformation of the bromine moiety to amine by a two-step procedure: S(N)2 reaction that introduces the hidden amine, phthalimide, followed by the removal of the protecting group and exposing the free amine. The use of phthalimide moiety in the process enabled monitoring the substitution reaction rate on the surface (by absorption spectroscopy) and showed first-order kinetics. The simplicity of the process, nonharsh reagents, and short reaction time allow the use of such SAMs in molecular nanoelectronics applications, where complete control of the used SAM is needed. The different molecular dipole of each step of the process, which is verified by DFT calculations, supports the use of these SAMs as means to tune the electronic properties of semiconductors and for better synergism between SAMs and standard microelectronics processes and devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interest in hydrogel materials is growing rapidly, due to the potential for hydrogel use in tissue engineering and drug delivery applications, and as coatings on medical devices. However, a key limitation with the use of hydrogel materials in many applications is their relatively poor mechanical properties compared with those of (less biocompatible) solid polymers. In this review, basic chemistry, microstructure and processing routes for common natural and synthetic hydrogel materials are explored first. Underlying structure-properties relationships for hydrogels are considered. A series of mechanical testing modalities suitable for hydrogel characterisation are next considered, including emerging test modalities, such as nanoindentation and atomic force microscopy (AFM) indentation. As the data analysis depends in part on the material's constitutive behaviour, a series of increasingly complex constitutive models will be examined, including elastic, viscoelastic and theories that explicitly treat the multiphasic poroelastic nature of hydrogel materials. Results from the existing literature on agar and polyacrylamide mechanical properties are compiled and compared, highlighting the challenges and uncertainties inherent in the process of gel mechanical characterisation. © 2014 Institute of Materials, Minerals and Mining and ASM International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferroelectric thin films have been intensively studied at the nanometre scale due to the application in many fields, such as non-volatile memories. Enhanced piezo-response force microscopy (E-PFM) was used to investigate the evolution of ferroelectric and ferroelastic nanodomains in a polycrystalline thin film of the simple multi-ferroic PbZr0.3Ti0.7O 3 (PZT). By applying a d.c. voltage between the atomic force microscopy (AFM) tip and the bottom substrate of the sample, we created an electric field to switch the domain orientation. Reversible switching of both ferroelectric and ferroelastic domains towards particular directions with predominantly (111) domain orientations are observed. We also showed that along with the ferroelectric/ferroelastic domain switch, there are defects that also switch. Finally, we proposed the possible explanation of this controllable defect in terms of flexoelectricity and defect pinning. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis. METHODS: The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow. RESULTS: All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation. CONCLUSIONS: The application of PEDOT polymers has evolved as a new perspective to advance stents. GENERAL SIGNIFICANCE: In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.