58 resultados para APPROXIMATE ENTROPY
Resumo:
This paper presents a novel technique for reconstructing an outdoor sculpture from an uncalibrated image sequence acquired around it using a hand-held camera. The technique introduced here uses only the silhouettes of the sculpture for both motion estimation and model reconstruction, and no corner detection nor matching is necessary. This is very important as most sculptures are composed of smooth textureless surfaces, and hence their silhouettes are very often the only information available from their images. Besides, as opposed to previous works, the proposed technique does not require the camera motion to be perfectly circular (e.g., turntable sequence). It employs an image rectification step before the motion estimation step to obtain a rough estimate of the camera motion which is only approximately circular. A refinement process is then applied to obtain the true general motion of the camera. This allows the technique to handle large outdoor sculptures which cannot be rotated on a turntable, making it much more practical and flexible.
Resumo:
Given a spectral density matrix or, equivalently, a real autocovariance sequence, the author seeks to determine a finite-dimensional linear time-invariant system which, when driven by white noise, will produce an output whose spectral density is approximately PHI ( omega ), and an approximate spectral factor of PHI ( omega ). The author employs the Anderson-Faurre theory in his analysis.
Resumo:
Several authors have proposed algorithms for approximate explicit MPC [1],[2],[3]. These algorithms have in common that they develop a stability criterion for approximate explicit MPC that require the approximate cost function to be within a certain distance from the optimal cost function. In this paper, stability is instead ascertained by considering only the cost function of the approximate MPC. If a region of the state space is found where the cost function is not decreasing, this indicates that an improved approximation (to the optimal control) is required in that region. If the approximate cost function is decreasing everywhere, no further refinement of the approximate MPC is necessary, since stability is guaranteed. ©2009 IEEE.
Resumo:
The current procedures in post-earthquake safety and structural assessment are performed manually by a skilled triage team of structural engineers/certified inspectors. These procedures, and particularly the physical measurement of the damage properties, are time-consuming and qualitative in nature. This paper proposes a novel method that automatically detects spalled regions on the surface of reinforced concrete columns and measures their properties in image data. Spalling has been accepted as an important indicator of significant damage to structural elements during an earthquake. According to this method, the region of spalling is first isolated by way of a local entropy-based thresholding algorithm. Following this, the exposure of longitudinal reinforcement (depth of spalling into the column) and length of spalling along the column are measured using a novel global adaptive thresholding algorithm in conjunction with image processing methods in template matching and morphological operations. The method was tested on a database of damaged RC column images collected after the 2010 Haiti earthquake, and comparison of the results with manual measurements indicate the validity of the method.
Resumo:
We consider a method for approximate inference in hidden Markov models (HMMs). The method circumvents the need to evaluate conditional densities of observations given the hidden states. It may be considered an instance of Approximate Bayesian Computation (ABC) and it involves the introduction of auxiliary variables valued in the same space as the observations. The quality of the approximation may be controlled to arbitrary precision through a parameter ε > 0. We provide theoretical results which quantify, in terms of ε, the ABC error in approximation of expectations of additive functionals with respect to the smoothing distributions. Under regularity assumptions, this error is, where n is the number of time steps over which smoothing is performed. For numerical implementation, we adopt the forward-only sequential Monte Carlo (SMC) scheme of [14] and quantify the combined error from the ABC and SMC approximations. This forms some of the first quantitative results for ABC methods which jointly treat the ABC and simulation errors, with a finite number of data and simulated samples. © Taylor & Francis Group, LLC.
Resumo:
We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global maximum. PES codifies this intractable acquisition function in terms of the expected reduction in the differential entropy of the predictive distribution. This reformulation allows PES to obtain approximations that are both more accurate and efficient than other alternatives such as Entropy Search (ES). Furthermore, PES can easily perform a fully Bayesian treatment of the model hyperparameters while ES cannot. We evaluate PES in both synthetic and real-world applications, including optimization problems in machine learning, finance, biotechnology, and robotics. We show that the increased accuracy of PES leads to significant gains in optimization performance.