58 resultados para 2d-page
Resumo:
Tracking methods have the potential to retrieve the spatial location of project related entities such as personnel and equipment at construction sites, which can facilitate several construction management tasks. Existing tracking methods are mainly based on Radio Frequency (RF) technologies and thus require manual deployment of tags. On construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. To address these limitations, this paper proposes an alternate 3D tracking method based on vision. It operates by tracking the designated object in 2D video frames and correlating the tracking results from multiple pre-calibrated views using epipolar geometry. The methodology presented in this paper has been implemented and tested on videos taken in controlled experimental conditions. Results are compared with the actual 3D positions to validate its performance.
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69μm unsteered, 3.70μm steered; elevational precision 38.67μm unsteered, 3.64μm steered. Similar results were found in the phantom data: lateral precision 26.51μm unsteered, 5.78μm steered; elevational precision 28.92μm unsteered, 11.87μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates.
Resumo:
By using carbon nanotubes as the smallest possible scattering element, light can be diffracted in a highly controlled manner to produce a 2D image, as reported by Haider Butt and co-workers on page OP331. An array of carbon nanotubes is elegantly patterned to produce a high resolution hologram. In response to incident light on the hologram, a high contrast and wide field of view "CAMBRIDGE" image is produced.
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10 MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69 μm unsteered, 3.70 μm steered; elevational precision 38.67 μm unsteered, 3.64 μm steered. Similar results were found in the phantom data: lateral precision 26.51 μm unsteered, 5.78 μm steered; elevational precision 28.92 μm unsteered, 11.87 μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Graphene is at the center of an ever growing research effort due to its unique properties, interesting for both fundamental science and applications. A key requirement for applications is the development of industrial-scale, reliable, inexpensive production processes. Here we review the state of the art of graphene preparation, production, placement and handling. Graphene is just the first of a new class of two dimensional materials, derived from layered bulk crystals. Most of the approaches used for graphene can be extended to these crystals, accelerating their journey towards applications. © 2012 Elsevier Ltd.
Resumo:
The loss mechanisms which control 2D incidence range are discussed with an emphasis on determining which real in-service geometric variations will have the largest impact. For the majority of engine compressor blades (Minlet>0.55) both the negative and positive incidence limits are controlled by supersonic patches. It is shown that these patches are highly sensitive to the geometric variations close to, and around the leading edge. The variations used in this study were measured from newly manufactured as well as ex-service blades. Over most the high pressure compressor considered, it was shown that manufacture variations dominated. The first part of the paper shows that, despite large geometric variations (~10% of leading edge thickness), the incidence range responded in a linear way. The result of this is that the geometric variations have little effect on the mean incidence range of a row of blades. In the second part of the paper a region of the design space is identified where non-linear behavior can result in a 10% reduction in positive incidence range. The mechanism for this is reported and design guidelines for its avoidance offered. In the final part of the paper, the linear behavior at negative incidence and the transonic nature of the flow is exploited to design a robust asymmetric leading edge with a 5% increase in incidence range.
Resumo:
Ideally, one would like to perform image search using an intuitive and friendly approach. Many existing image search engines, however, present users with sets of images arranged in some default order on the screen, typically the relevance to a query, only. While this certainly has its advantages, arguably, a more flexible and intuitive way would be to sort images into arbitrary structures such as grids, hierarchies, or spheres so that images that are visually or semantically alike are placed together. This paper focuses on designing such a navigation system for image browsers. This is a challenging task because arbitrary layout structure makes it difficult - if not impossible - to compute cross-similarities between images and structure coordinates, the main ingredient of traditional layouting approaches. For this reason, we resort to a recently developed machine learning technique: kernelized sorting. It is a general technique for matching pairs of objects from different domains without requiring cross-domain similarity measures and hence elegantly allows sorting images into arbitrary structures. Moreover, we extend it so that some images can be preselected for instance forming the tip of the hierarchy allowing to subsequently navigate through the search results in the lower levels in an intuitive way. Copyright 2010 ACM.
Resumo:
A symmetry-extended Maxwell treatment of the net mobility of periodic bar-and-joint frameworks is used to derive a sufficient condition for auxetic behaviour of a 2D material. The type of auxetic behaviour that can be detected by symmetry has Poisson's ratio -1, with equal expansion/contraction in all directions, and is here termed equiauxetic. A framework may have a symmetry-detectable equiauxetic mechanism if it belongs to a plane group that includes rotational axes of order n = 6, 4, or 3. If the reducible representation for the net mobility contains mechanisms that preserve full rotational symmetry (A modes), these are equiauxetic. In addition, for n = 6, mechanisms that halve rotational symmetry (B modes) are also equiauxetic. © EPLA, 2013.