59 resultados para 250503 Characterisation of Macromolecules
Resumo:
Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure. © 2006 IOP Publishing Ltd.
Resumo:
Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.
Growth and characterisation of high-density mats of single-walled carbon nanotubes for interconnects
Resumo:
A friction test rig has been developed to carry out repeated sliding friction tests for premium tubular connections. The test rig enables accurate measurement of friction in various contact regimes which are relevant to the threaded connections between tubular components. Higher load tests can simulate the contact in metal-to-metal seals under very high contact pressures by using perpendicular pin-on-pin tests. The contact in the thread loading flank under intermediate pressures can be simulated by using larger radius coupon-on-coupon tests. The measured coefficient of friction is well correlated with a lubrication parameter combining lubricant film thickness and initial surface roughness. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The ballistic performance of equi-mass plates made from (i) stainless steel (SS); (ii) carbon fibre/epoxy (CF) laminate and (iii) a hybrid plate of both materials has been characterised for a spherical steel projectile. The hybrid plate was orientated with steel on the impact face (SSCF) and on the distal face (CFSS). The penetration velocity (V 50) was highest for the SS plate and lowest for the CF plate. A series of double impact tests were performed, with an initial velocity V I and a subsequent velocity V II at the same impact site. An interaction diagram in (V I,V II) space was constructed to delineate penetration from survival under both impacts. The degree of interaction between the two impact events was greater for the CFSS plate than for the SSCF plate, implying that the distal face has the major effect upon the degree of interaction.
Resumo:
The main difficulties encountered in the development of microscale fluidic pumping systems stem from the fact that these systems tend to comprise highly three-dimensional parts, which are incompatible with traditional microproduction technologies. Regardless of the type of pumping principle, most of the hydraulic systems contain valves and in particular a one-way valve. This paper presents the design and modelling of an ortho-planar one-way microvalve. The main advantages of such a valve are that it is very compact and can be made from a single flat piece of material. An analytical model of the spring deflection has been developed and compared to FEM. A prototype with a bore of 1.5 mm has been build using a micro EDM (electro discharge machining) machine and also tested. © 2006 International Federation for Information Processing.
Resumo:
We have used terahertz spectroscopy to measure the conductivity and time-resolved photoconductivity of a range of semiconducting nanostructures. This article focuses on our recent terahertz conductivity studies on semiconductor nanowires and single walled carbon nanotubes. © 2010 IEEE.
Resumo:
A series of laboratory-scale T-bar penetrometer tests have been conducted on a clay bed virgin consolidated from reconstituted high plasticity marine clay. This investigation was mainly concerned with the effects on the penetration resistance of rate of penetration and the presence of free water on the surface of the clay bed. The rate of penetration varied between 0.005mm/s and 50mm/s. The results showed that the nature of soil resistance was 'undrained' over the range of speeds studied, and the resistance showed a marked viscous rate effect. The virgin consolidated clay bed exhibited an increase in penetration resistance by up to 35% for a factor 10 increase in rate of penetration much larger than values previously reported for kaolin. The presence of water on the surface of clay bed had a profound impact on penetration resistance, particularly on the remoulded strength obtained by taking the T-bar through successive penetration and extraction cycles. This was true even when the remoulding cycles were conducted without the T-bar breaking through the clay surface.
Resumo:
Interest in hydrogel materials is growing rapidly, due to the potential for hydrogel use in tissue engineering and drug delivery applications, and as coatings on medical devices. However, a key limitation with the use of hydrogel materials in many applications is their relatively poor mechanical properties compared with those of (less biocompatible) solid polymers. In this review, basic chemistry, microstructure and processing routes for common natural and synthetic hydrogel materials are explored first. Underlying structure-properties relationships for hydrogels are considered. A series of mechanical testing modalities suitable for hydrogel characterisation are next considered, including emerging test modalities, such as nanoindentation and atomic force microscopy (AFM) indentation. As the data analysis depends in part on the material's constitutive behaviour, a series of increasingly complex constitutive models will be examined, including elastic, viscoelastic and theories that explicitly treat the multiphasic poroelastic nature of hydrogel materials. Results from the existing literature on agar and polyacrylamide mechanical properties are compiled and compared, highlighting the challenges and uncertainties inherent in the process of gel mechanical characterisation. © 2014 Institute of Materials, Minerals and Mining and ASM International.
Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors
Resumo:
Photonic crystals are materials that are used to control or manipulate the propagation of light through a medium for a desired application. Common fabrication methods to prepare photonic crystals are both costly and intricate. However, through a cost-effective laser-induced photochemical patterning, one-dimensional responsive and tuneable photonic crystals can easily be fabricated. These structures act as optical transducers and respond to external stimuli. These photonic crystals are generally made of a responsive hydrogel that can host metallic nanoparticles in the form of arrays. The hydrogel-based photonic crystal has the capability to alter its periodicity in situ but also recover its initial geometrical dimensions, thereby rendering it fully reversible and reusable. Such responsive photonic crystals have applications in various responsive and tuneable optical devices. In this study, we fabricated a pH-sensitive photonic crystal sensor through photochemical patterning and demonstrated computational simulations of the sensor through a finite element modelling technique in order to analyse its optical properties on varying the pattern and characteristics of the nanoparticle arrays within the responsive hydrogel matrix. Both simulations and experimental results show the wavelength tuneability of the sensor with good agreement. Various factors, including nanoparticle size and distribution within the hydrogel-based responsive matrices that directly affect the performance of the sensors, are also studied computationally. © 2014 The Royal Society of Chemistry.
Resumo:
Multi-impact of projectiles on thin 304 stainless steel plates is investigated to assess the degradation of ballistic performance, and to characterise the inherent mechanisms. Assessment of ballistic degradation is by means of a double-impact of rigid spheres at the same site on a circular clamped plate. The limiting velocity of the second impact, will be altered by the velocity of the antecedent impact. Finite element analyses were used to elucidate experimental results and understand the underlying mechanisms that give rise to the performance degradation. The effect of strength and ductility on the single and multi-impact performance was also considered. The model captured the experimental results with excellent agreement. Moreover, the material parameters used within the model were exclusively obtained from published works with no fitting or calibration required. An attempt is made to quantify the elevation of the ballistic limit of thin plates by the dynamic mechanism of travelling hinges. Key conclusions: The multi-hit performance scales linearly with the single-hit performance; and strength is a significantly greater effector of increased ballistic limit than ductility, even at the expense of toughness. © 2014 Elsevier Ltd.
Resumo:
Reactive magnesia (MgO) has emerged as an essential component in a new family of cements with significantly superior technical and environmental performance over Portland cement. The physical characteristics of different reactive magnesia, which are likely to affect their engineering performance, vary considerably depending on their origin and manufacturing processes. To appropriately utilise such a material, it is essential to develop a better understanding of the characteristics of different magnesia from various sources. In this study, the detailed characterisation of 14 commercial magnesia in terms of reactivity, textural properties, X-ray diffraction pattern, pH value and hydration behaviour and morphology is presented and correlation between them is developed. Relationships were developed between the reactivity, specific surface area, agglomeration ratio and hydration rate based on the experimental observations. As a result, the reactive magnesia used in this study were grouped into three categories and their characteristics and anticipated performances in different applications were discussed.
Resumo:
Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.