56 resultados para 229
Resumo:
Effective use of materials is one possible component of a sustainable manufacturing strategy. There are many such strategies proposed in the literature and used in practice, with confusion over what they are, what the differences among them may be and how they can be used by practitioners in design and manufacture to improve the sustainability of their product and processes. This paper reviews the literature on sustainable manufacturing strategies that deliver improved material performance. Four primary strategies were found: waste minimisation; material efficiency; resource efficiency; and eco-efficiency. The literature was analysed to determine the key characteristics of these sustainable manufacturing strategies and 17 characteristics were found. The four strategies were then compared and contrasted against all the characteristics. While current literature often uses these strategy titles in a confusing, occasionally inter-changeable manner, this study attempts to create clear separation between them. Definition, scope and practicality of measurement are shown to be key characteristics that impact upon the ability of manufacturing companies to make effective use of the proposed strategy. It is observed that the most actionable strategies may not include all of the dimensions of interest to a manufacturer wishing to become more sustainable, creating a dilemma between ease of implementation and breadth of impact. © 2008 Taylor & Francis.
Resumo:
In recent years, the use of morphological decomposition strategies for Arabic Automatic Speech Recognition (ASR) has become increasingly popular. Systems trained on morphologically decomposed data are often used in combination with standard word-based approaches, and they have been found to yield consistent performance improvements. The present article contributes to this ongoing research endeavour by exploring the use of the 'Morphological Analysis and Disambiguation for Arabic' (MADA) tools for this purpose. System integration issues concerning language modelling and dictionary construction, as well as the estimation of pronunciation probabilities, are discussed. In particular, a novel solution for morpheme-to-word conversion is presented which makes use of an N-gram Statistical Machine Translation (SMT) approach. System performance is investigated within a multi-pass adaptation/combination framework. All the systems described in this paper are evaluated on an Arabic large vocabulary speech recognition task which includes both Broadcast News and Broadcast Conversation test data. It is shown that the use of MADA-based systems, in combination with word-based systems, can reduce the Word Error Rates by up to 8.1 relative. © 2012 Elsevier Ltd. All rights reserved.
A design strategy in the propulsion system attachment to a submarine hull to minimise radiated noise
Resumo:
Vibration modes of a submerged hull are excited by fluctuating forces generated at the propeller and transmitted to the hull via the propeller-shafting system. The low frequency hull vibrational modes result in significant sound radiation. This work investigates the reduction of the far-field radiated sound pressure by optimising the connection point of the shafting system to the hull. The submarine hull is modelled as a fluid loaded cylindrical hull with truncated conical shells at each end. The propeller-shafting system consists of the propeller, shaft, thrust bearing and foundation, and is modelled in a modular approach using a combination of spring-mass-damper elements and continuous systems (beams, plates, shells). The foundation is attached to the stern side end plate of the hull, which is modelled as a circular plate coupled to an annular plate. By tuning the connection radius of the foundation to the end plate, the maximum radiated noise in a given frequency range can be minimised.
Resumo:
This paper presents a method for the linear analysis of the stiffness and strength of open and closed cell lattices with arbitrary topology. The method hinges on a multiscale approach that separates the analysis of the lattice in two scales. At the macroscopic level, the lattice is considered as a uniform material; at the microscopic scale, on the other hand, the cell microstructure is modelled in detail by means of an in-house finite element solver. The method allows determine the macroscopic stiffness, the internal forces in the edges and walls of the lattice, as well as the global periodic buckling loads, along with their buckling modes. Four cube-based lattices and nine cell topologies derived by Archimedean polyhedra are studied. Several of them are characterized here for the first time with a particular attention on the role that the cell wall plays on the stiffness and strength properties. The method, automated in a computational routine, has been used to develop material property charts that help to gain insight into the performance of the lattices under investigation. © 2012 Elsevier B.V.
Resumo:
The viability of Boundary Layer Ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60-degree inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect which occurs throughout the annulus despite the localised nature of the inlet distortion. Increased loss generation in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. Copyright © 2012 by ASME.
Resumo:
A laboratory-based methodology to launch cylindrical sand slugs at high velocities is developed. The methodology generates well-characterised soil ejecta without the need for detonation of an explosive; this laboratory-based tool thereby allows for the experimental investigation of the soil-structure events. The experimental set-up comprises a launcher with a cylindrical cavity and a piston to push out the sand slug. The apparatus is used to launch both dry and water-saturated sand slugs. High speed photography is used to characterise the evolution of the sand slugs after launch. We find that the diameter of the slugs remains unchanged, and the sand particles possess only an axial component of velocity. However, the sand particles have a uniform spatial gradient of axial velocity and this results in lengthening of the slugs as they travel towards their target. Thus, the density of the sand slugs remains spatially homogenous but decreases with increasing time. The velocity gradient is typically higher in the dry sand slugs than that of the water-saturated slugs. The pressure exerted by the slugs on a rigid-stationary target is measured by impacting the slugs against a direct impact Kolsky bar. After an initial high transient pressure, the pressure reduces to a value of approximately ρv 2 where ρ is the density of the impacting sand slug and v is the particle velocity. This indicates that loading due to the sand is primarily inertial in nature. The momentum transmitted to the Kolsky bar was approximately equal to the incident momentum of the sand slugs, regardless of whether they are dry or water-saturated. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Laminated glass units are traditionally used to provide a degree of post-fracture strength, but the residual strength is often limited to relatively low levels suffi cient for holding the glass fragments together for a predetermined amount of time. It is possible to achieve a higher level of residual strength, but this requires specific boundary conditions and/or opaque reinforcing materials. This paper describes the experimental investigations on laminated glass units that can provide a signifi cant degree of post-fracture resistance, without the need of boundary restraints or opaque reinforcing materials. The glass units are composed entirely of combinations of conventional transparent interlayers and commercially available glass (annealed, heat treated and chemically strengthened). The paper also describes an empirical energy based interpretation of the mechanical response of the laminated units.
Resumo:
Localized regions of turbulence, or turbulent clouds, in a stratified fluid are the subject of this study, which focuses on the edge dynamics occurring between the turbulence and the surrounding quiescent region. Through laboratory experiments and numerical simulations of stratified turbulent clouds, we confirm that the edge dynamics can be subdivided into materially driven intrusions and horizontally travelling internal wave-packets. Three-dimensional visualizations show that the internal gravity wave-packets are in fact large-scale pancake structures that grow out of the turbulent cloud into the adjacent quiescent region. The wave-packets were tracked in time, and it is found that their speed obeys the group speed relation for linear internal gravity waves. The energetics of the propagating waves, which include waveforms that are inclined with respect to the horizontal, are also considered and it is found that, after a period of two eddy turnover times, the internal gravity waves carry up to 16 % of the cloud kinetic energy into the initially quiescent region. Turbulent events in nature are often in the form of decaying turbulent clouds, and it is therefore suggested that internal gravity waves radiated from an initial cloud could play a significant role in the reorganization of energy and momentum in the atmosphere and oceans.©2013 Cambridge University Press.
Resumo:
Exploiting the body dynamics to control the behavior of robots is one of the most challenging issues, because the use of body dynamics has a significant potential in order to enhance both complexity of the robot design and the speed of movement. In this paper, we explore the control strategy of rapid four-legged locomotion by exploiting the intrinsic body dynamics. Based on the fact that a simple model of four-legged robot is known to exhibit interesting locomotion behavior, this paper analyzes the characteristics of the dynamic locomotion for the purpose of the locomotion control. The results from a series of running experiments with a robot show that, by exploiting the unique characteristics induced by the body dynamics, the forward velocity can be controlled by using a very simple method, in which only one control parameter is required. Furthermore it is also shown that a few of such different control parameters exist, each of them can control the forward velocity. Interestingly, with these parameters, the robot exhibits qualitatively different behavior during the locomotion, which could lead to our comprehensive understanding toward the behavioral diversity of adaptive robotic systems. © 2005 IEEE.