59 resultados para 164-996
Resumo:
It is essential to monitor deteriorated civil engineering structures cautiously to detect symptoms of their serious disruptions. A wireless sensor network can be an effective system for monitoring civil engineering structures. It is fast to deploy sensors especially in difficult-to-access areas, and it is extendable without any cable extensions. Since our target is to monitor deteriorations of civil engineering structures such as cracks at tunnel linings, most of the locations of sensors are known, and sensors are not required to move dynamically. Therefore, we focus on developing a deployment plan of a static network in order to reduce the value of a cost function such as initial installation cost and summation of communication distances of the network. The key issue of the deployment is the location of relays that forward sensing data from sensors to a data collection device called a gateway. In this paper, we propose a relay deployment-planning tool that can be used to design a wireless sensor network for monitoring civil engineering structures. For the planning tool, we formalize the model and implement a local search based algorithm to find a quasi-optimal solution. Our solution guarantees two routings from a sensor to a gateway, which can provide higher reliability of the network. We also show the application of our experimental tool to the actual environment in the London Underground.
Resumo:
Tailored sustainability assessment represents one approach to addressing sustainability issues on large-scale urban projects with varying geographical, social and political constraints and diverse incentives among stakeholders. This paper examines the value and limitations of this approach. Three case studies of tailored systems developed by the authors for three unique masterplanning projects are discussed in terms of: contextual sustainability drivers; nature and evolution of systems developed; outcomes of implementation; and overall value delivered. Analysis Leads to conclusions on the key features of effective tailored assessment, the value of tailored sustainability assessment from various perspectives (including client, designer, end-users and the environment), and the limitations of tailored assessment as a tool for comparative analysis between projects. Although systems considered here are specific to individual projects and developed commercially, the challenges and lessons learned are relevant to a range of sustainability assessment approaches developed under different conditions.
Resumo:
The past 15 years have seen increasing applications of soil mix technology in land remediation, mainly in stabilisation/solidification treatments and the construction of low-permeability cut-off walls and permeable reactive barriers; clear evidence of the versatility of the technology and its wide-ranging applications. This paper provides an overview of some of the recent innovations of soil mix technology in land remediation covering equipment developments and applications, including systems for rectangular panels and trenching systems, treatments, such as chemical oxidation, and additives, such as modified clays, zeolites and reactive magnesia. The paper also provides case studies for such innovations. The paper concludes with an overview of an on-going research and development project SMiRT (Soil Mix Remediation Technology) which will involve field trials on a contaminated site and will employ some of the innovations discussed in the paper. The range of significant advantages that soil mix technology now offers compared to other remediation techniques is likely to place this remediation method at the forefront of remedial options for future brownfield projects.
Resumo:
The north-south line in Amsterdam is being built underneath the historic centre of the city. Three deep stations are being constructed in deep excavations supported by diaphragm walls. During the excavation for Vijzelgracht station, leakage through the wall resulted in large settlements and damage to historic buildings, which threatened continuation of the project. The authors analysed the cause of the leakage and the damage to the buildings. With the application of robust preventative measures at two of the deep excavations it was possible to continue the project. This paper reports on the cause of the events, the damage to the buildings and the counter-measures taken. It includes lessons learned for the project and for the foundations industry.
Resumo:
This paper discusses the sustainability of two different approaches to upgrade water and sanitation infrastructure in Kenya’s largest informal settlement, Kibera. A background to the urbanization of poverty is outlined along with approaches to urban slums. Two case-studies of completed interventions of infrastructure upgrading have been investigated. In one case-study, the upgrading method driven by an NGO uses an integrated livelihoods and partnership technique at community level to create an individual project. in the other case-study, the method is a collaboration between the government and a multi-lateral agency to deliver upgraded services as a part of a country-wide programme. The ‘bottom-up’ (project) and ‘top-down’ (programme) approaches each seek sustainability and aim to achieve this in the same context using different techniques. This paper investigates the sustainability of each approach. The merits and challenges of the approaches are discussed with the projected future of Kibera. The paper highlights the valuable opportunity for the role of appropriate engineering infrastructure for sustainable urban development, as well as the alleviation of poverty in a developing context.
Resumo:
Concerns over climate change mean engineers need to understand the greenhouse gas emissions associated with infrastructure projects. Standard coefficients are increasingly used to calculate the embodied emissions of construction materials, but these are not generally appropriate to inherently variable earthworks. This paper describes a new tool that takes a bottom-up approach to calculating carbon dioxide emissions from earthworks operations. In the case of bulk earthworks this is predominantly from the fuel used by machinery moving materials already on site. Typical earthworks solutions are explored along with the impact of using manufactured materials such as lime.
Resumo:
Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.
Resumo:
Laser micro machining is fast gaining popularity as a method of fabricating micro scale structures. Lasers have been utilised for micro structuring of metals, ceramics and glass composites and with advances in material science, new materials are being developed for micro/nano products used in medical, optical, and chemical industries. Due to its favourable strength to weight ratio and extreme resistance to chemical attack, glassy carbon is a new material that offers many unique properties for micro devices. The laser machining of SIGRADUR® G grade glassy carbon was characterised using a 1065 nm wavelength Ytterbium doped pulsed fiber laser. The laser system has a selection of 25 preset waveforms with optimised peak powers for different pulsing frequencies. The optics provide spot diameter of 40 μm at the focus. The effect of fluence, transverse overlap and pulsing frequency (as waveform) on glassy carbon was investigated. Depth of removal and surface roughness were measured as machining quality indicators. The damage threshold fluence was determined to be 0.29 J/cm2 using a pulsing frequency of 250 kHz and a pulse width of 18 ns (waveform 3). Ablation rates of 17 < V < 300 μm3/pulse were observed within a fluence range of 0.98 < F < 2.98 J/cm2. For the same fluence variation, 0.6 μm to 6.8 μm deep trenches were machined. Trench widths varied from 29 μm at lower fluence to 47 μm at the higher fluence. Square pockets, 1 mm wide, were machined to understand the surface machining or milling. The depth of removal using both waveform 3 and 5 showed positive correlation with fluence, with waveform 5 causing more removal than waveform 3 for the same fluence. Machined depths varied from less than 1 μm to nearly 40 μm. For transverse overlap variation using waveform 3, the best surface finish with Rz = 1.1 μm was obtained for fluence 0.792 J/cm2 for transverse overlap of 1 μm, 6 μm, and 9 μm at machined depths of 22.9 μm, 6.6 μm, and 4.6 μm respectively. For fluence of 1.426 J/cm2, the best surface finish with Rz = 1.2 μm was obtained for transverse overlap of 6 μm, and 9 μm at machined depths of 12.46 μm, and 8.6 μm respectively. The experimental data was compiled as machining charts and utilised for fabricating a micro-embossing glassy carbon master toolsets as a capability demonstration.