49 resultados para 152-918B
Resumo:
The mean-lifetimes, τ, of various medium-spin excited states in Pd103 and Cd106,107 have been deduced using the Recoil Distance Doppler Shift technique and the Differential Decay Curve Method. In Cd106, the mean-lifetimes of the Iπ=12+ state at Ex=5418 keV and the Iπ=11- state at Ex=4324 keV have been deduced as 11.4(17)ps and 8.2(7)ps, respectively. The associated β2 deformation within the axially-symmetric deformed rotor model for these states are 0.14(1) and 0.14(1), respectively. The β2 deformation of 0.14(1) for the Iπ=12+ state in Cd106 compares with a predicted β2 value from total Routhian surface (TRS) calculations of 0.17. In addition, the mean-lifetimes of the yrast Iπ=152- states in Pd103 (at Ex=1262 keV) and Cd107 (at Ex=1360 keV) have been deduced to be 31.2(44)ps and 31.4(17)ps, respectively, corresponding to β2 values of 0.16(1) and 0.12(1) assuming axial symmetry. Agreement with TRS calculations are good for Pd103 but deviate for that predicted for Cd107. © 2007 The American Physical Society.
Resumo:
Future microrobotic applications require actuators that can generate a high actuation force and stroke in a limited volume. Up to now, little research has been performed on the development of pneumatic and hydraulic microactuators, although they offer great prospects in achieving high force densities. One of the main technological barriers in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microactuators based on ferrofluids. A design and simulation method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. These actuators have an outside diameter of 2 mm, a length of 13 mm and have been tested using both pressurized air and water. Our current actuator prototypes are able to operate at pressures up to 1.6 MPa without leakage. At these pressures, forces up to 0.65 N have been achieved. The stroke of the actuators is 10 mm. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The adoption of inclusive design approach into design practice is compatible to the needs of an ageing society. However, tools and methods that promote inclusivity during new product development are scarcely used in industry. This paper is part of a research project that investigates ways to accommodate inclusive design into the design process in industrial context. The present paper is based on the finds from the observations and interviews with industrial designers and interviews with stakeholders. The outcomes from the study supported a better understanding of the client-designer dynamic as well as the stages in the design process where information related to inclusive design could be introduced. The findings were essential to inspire the development of an inclusive design interactive technique to be used by clients and designers. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Metallic silicides have been used as contact materials on source/drain and gate in metal-oxide semiconductor (MOS) structure for 40 years. Since the 65 nm technology node, NiSi is the preferred material for contact in microelectronic due to low resistivity, low thermal budget, and low Si consumption. Ni(Pt)Si with 10 at.% Pt is currently employed in recent technologies since Pt allows to stabilize NiSi at high temperature. The presence of Pt and the very low thickness (<10 nm) needed for the device contacts bring new concerns for actual devices. In this work, in situ techniques [X-ray diffraction (XRD), X-ray reflectivity (XRR), sheet resistance, differential scanning calorimetry (DSC)] were combined with atom probe tomography (APT) to study the formation mechanisms as well as the redistribution of dopants and alloy elements (Pt, Pd.) during the silicide formation. Phenomena like nucleation, lateral growth, interfacial reaction, diffusion, precipitation, and transient phase formation are investigated. The effect of alloy elements (Pt, Pd.) and dopants (As, B.) as well as stress and defects induced by the confinement in devices on the silicide formation mechanism and alloying element redistribution is examined. In particular APT has been performed for the three-dimensional (3D) analysis of MOSFET at the atomic scale. The advances in the understanding of the mechanisms of formation and redistribution are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.