552 resultados para SILICON NANOWIRES
Resumo:
We experimentally demonstrate a self-aligned approach for the fabrication of nanoscale hybrid silicon-plasmonic waveguide fabricated by local oxidation of silicon (LOCOS). Implementation of the LOCOS technique provides compatibility with standard complementary metal-oxide-semiconductor technology and allows avoiding lateral misalignment between the silicon waveguide and the upper metallic layer. We directly measured the propagation and the coupling loss of the fabricated hybrid waveguide using a near-field scanning optical microscope. The demonstrated structure provides nanoscale confinement of light together with a reasonable propagation length of ∼100 μm. As such, it is expected to become an important building block in future on-chip optoelectronic circuitry. © 2010 American Institute of Physics.
Resumo:
We experimentally demonstrate a high-Q ultrathin silicon nitride microring resonator operating at wavelength of 970 nm that is favorable for large variety of biophotonic applications. Implementation of thin device layer of 200 nm allows enhanced interaction between the optical mode and environment, while still maintaining high quality factor of resonator. In addition, we show the importance of spectral window around 970 nm to improve device sensing capability. © 2010 American Institute of Physics.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. ©2009 Optical Society of America.
Resumo:
We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © OSA 2012.
Resumo:
We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2011 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. © 2011 Optical Society of America.
Resumo:
We demonstrate an integrated on-chip compact and high efficiency Schottky detector for telecom wavelengths based on silicon metal waveguide. Detection is based on the internal photoemission process. Theory and experimental results are discussed. © 2012 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabricating hybrid silicon plasmonic waveguide. The demonstrated structure provides nanoscale confinement together with propagation length of 100 microns on chip. Near-field measurements of propagation and coupling loss are presented. ©2011 Optical Society of America.
Resumo:
Optical pump-terahertz probe spectroscopy was used to study the key electronic properties of GaAs, InAs and InP nanowires at room temperature. Of all nanowires studied, InAs nanowires exhibited the highest mobilities of 6000 cm2V-1s-1. InP nanowires featured the longest photoconductivity lifetimes and an exceptionally low surface recombination velocity of 170 cm/s. © 2013 IEEE.
Resumo:
Silicon carbide (SiC) bipolar junction transistors (BJTs) require a continuous base current in the on-state. This base current is usually made constant and is corresponding to the maximum collector current and maximum junction temperature that is foreseen in a certain application. In this paper, a discretized proportional base driver is proposed which will reduce, for the right application, the steady-state power consumption of the base driver. The operation of the proposed base driver has been verified experimentally, driving a 1200-V/40-A SiC BJT in a dc-dc boost converter. In order to determine the potential reduction of the power consumption of the base driver, a case with a dc-dc converter in an ideal electric vehicle driving the new European drive cycle has been investigated. It is found that the steady-state power consumption of the base driver can be reduced by approximately 60%. The total reduction of the driver consumption is 3459 J during the drive cycle, which is slightly more than the total on-state losses for the SiC BJTs used in the converter. © 2013 IEEE.
Resumo:
Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.
Resumo:
We demonstrate self-aligned approach for fabrication of hybrid silicon plasmonic waveguide. The demonstrated structure provides both nanoscale confinement together with propagation length of 100 microns. Near-field measurements of propagation and coupling loss are also presented. © 2011 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabrication of hybrid silicon plasmonic waveguide. The demonstrated structure provides both nanoscale confinement together with propagation length of 100 microns. Near-field measurements of propagation and coupling loss are also presented. ©2011 Optical Society of America.
Resumo:
We demonstrate self-aligned approach for fabrication of hybrid silicon plasmonic waveguide. The demonstrated structure provides both nanoscale confinement together with propagation length of 100 microns. Near-field measurements of propagation and coupling loss are also presented. © 2011 Optical Society of America.
Resumo:
We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 Optical Society of America.