467 resultados para Turbulent Environments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study on normal hole bleed in a supersonic turbulent boundary layer has been conducted. A combination of LDV, Schlieren imagery and oil flow visualization were used to provide a better understanding of the three-dimensional flow field surrounding a supersonic bleed array. Experiments were performed at Mach numbers of 1.8 and 2.5, while previously published results at Mach numbers of 1.3 and 1.5 were also incorporated. The bleed system was capable of removing up to approximately 10% of the incoming boundary layer through a tunnel-spanning array of discrete holes with diameters the same order of magnitude of boundary layer displacement thickness. Inspection of boundary layer profiles downstream of the bleed region indicates that vorticity generated by the discrete holes can have a substantial influence on changes to the boundary layer shape factor and skin friction coefficient, through modification of the lower 20% of the boundary layer. This vorticity was visualized through oil-flow visualization, and LDV measurements, showing the development of two vortices off each bleed hole, and corresponding upwash and downwash regions with far-reaching three dimensional effects. © 2013 by J. M. Oorebeek and H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistically planar turbulent partially premixed flames for different initial intensities of decaying turbulence have been simulated for global equivalence ratios = 0.7 and 1.0 using three-dimensional, simplified chemistry-based direct numerical simulations (DNS). The simulation parameters are chosen such that the flames represent the thin reaction zones regime combustion. A random bimodal distribution of equivalence ratio is introduced in the unburned gas ahead of the flame to account for the mixture inhomogeneity. The results suggest that the probability density functions (PDFs) of the mixture fraction gradient magnitude |Δξ| (i.e., P(|Δξ|)) can be reasonably approximated using a log-normal distribution. However, this presumed PDF distribution captures only the qualitative nature of the PDF of the reaction progress variable gradient magnitude |Δc| (i.e., P(|Δc|)). It has been found that a bivariate log-normal distribution does not sufficiently capture the quantitative behavior of the joint PDF of |Δξ| and |Δc| (i.e., P(|Δξ|, |Δc|)), and the agreement with the DNS data has been found to be poor in certain regions of the flame brush, particularly toward the burned gas side of the flame brush. Moreover, the variables |Δξ| and |Δc| show appreciable correlation toward the burned gas side of the flame brush. These findings are corroborated further using a DNS data of a lifted jet flame to study the flame geometry dependence of these statistics. © 2013 Copyright Taylor and Francis Group, LLC.