43 resultados para traffic conflicts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric systems are viewed as a promising approach to energy harvesting from environmental vibrations. The energy harvested from real vibration sources is usually difficult to estimate analytically. Therefore, it is hard to optimise the associated energy harvesting system. This work investigates the optimisation of a piezoelectric cantilever system using a genetic algorithm based approach with numerical simulations. The genetic algorithm globally considers the effects of each parameter to produce an optimal frequency response to scavenge more energy from the real vibrations while the conventional sinusoidal based method can only optimise the resistive load for a given resonant frequency. Experimental acceleration data from the vibrations of a vehicle-excited manhole cover demonstrates that the optimised harvester automatically selects the right frequency and also synchronously optimises the damper and the resistive load. This method shows great potential for optimizing the energy harvesting systems with real vibration data. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

in this contribution we discuss a stochastic framework for air traffic conflict resolution. The conflict resolution task is posed as the problem of optimizing an expected value criterion. Optimization is carried out by Monte Carlo Markov Chain (MCMC) simulation. A numerical example illustrates the proposed strategy. Copyright © 2005 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The safety of the flights, and in particular conflict resolution for separation assurance, is one of the main tasks of Air Traffic Control. Conflict resolution requires decision making in the face of the considerable levels of uncertainty inherent in the motion of aircraft. We present a Monte Carlo framework for conflict resolution which allows one to take into account such levels of uncertainty through the use of a stochastic simulator. A simulation example inspired by current air traffic control practice illustrates the proposed conflict resolution strategy. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a direct comparison of two stochastic optimisation techniques (Markov Chain Monte Carlo and Sequential Monte Carlo) when applied to the problem of conflict resolution and aircraft trajectory control in air traffic management. The two methods are then also compared to another existing technique of Mixed-Integer Linear Programming which is also popular in distributed control. © 2011 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-lane, "microscopic" (vehicle-by-vehicle) simulations of motorway traffic are developed using existing models and validated using measured data from the M25 motorway. An energy consumption model is also built in, which takes the logged trajectories of simulated vehicles as drive-cycles. The simulations are used to investigate the effects on motorway congestion and fuel consumption if "longer and/or heavier vehicles" (LHVs) were to be permitted in the UK. Baseline scenarios are simulated with traffic composed of cars, light goods vehicles and standard heavy goods vehicles (HGVs). A proportion of conventional articulated HGVs is then replaced by a smaller number of LHVs carrying the same total payload mass and volume. Four LHV configurations are investigated: an 18.75 m, 46 t longer semi-trailer (LST); 25.25 m, 50 t and 60 t B-doubles and a 34 m, 82 t A-double. Metrics for congestion, freight fleet energy consumption and car energy consumption are defined for comparing the scenarios. Finally, variation of take-up level and LHV engine power for the LST and A-double are investigated. It is concluded that: (a) LHVs should reduce congestion particularly in dense traffic, however, a low mean proportion of freight traffic on UK roads and low take-up levels will limit this effect to be almost negligible; (b) LHVs can significantly improve the energy efficiency of freight fleets, giving up to a 23% reduction in fleet energy consumption at high take-up levels; (c) the small reduction in congestion caused by LHVs could improve the fuel consumption of other road users by up to 3% in dense traffic, however in free-flowing traffic an opposite effect occurs due to higher vehicle speeds and aerodynamic losses; and (d) underpowered LHVs have potential to generate severe congestion, however current manufacturers' recommendations appear suitable. © 2013 IMechE.