34 resultados para traditional droop controller design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep mixing is effectively used in excavations both in conjunction with and in substitution of traditional techniques, where it results in more economical and convenient solutions for the stability of the system and the prevention of seepage. Deep mixed walls constructed as part of a soldier pile and tie-backs system act also as temporary support, prevent seepage like a sheet pile wall, but require a lower amount of steel. The deep mixed treatment can also contribute to the stability of the wall system against deep-seated failures. Although deep mixing is currently used for excavation control in numerous projects, no standard procedure has been developed and the different applications have not been evaluated. As this technique emerges as a more economical and effective alternative to traditional excavation shoring, there is a need for guidelines describing proven procedures for evaluation of design, analysis and construction. This paper presents comparisons in the design of excavation support using deep mixing and other traditional techniques. Issues important for design, analysis, and construction of deep mixed excavation walls are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New robotics is an approach to robotics that, in contrast to traditional robotics, employs ideas and principles from biology. While in the traditional approach there are generally accepted methods (e. g., from control theory), designing agents in the new robotics approach is still largely considered an art. In recent years, we have been developing a set of heuristics, or design principles, that on the one hand capture theoretical insights about intelligent (adaptive) behavior, and on the other provide guidance in actually designing and building systems. In this article we provide an overview of all the principles but focus on the principles of ecological balance, which concerns the relation between environment, morphology, materials, and control, and sensory-motor coordination, which concerns self-generated sensory stimulation as the agent interacts with the environment and which is a key to the development of high-level intelligence. As we argue, artificial evolution together with morphogenesis is not only "nice to have" but is in fact a necessary tool for designing embodied agents.