41 resultados para terminal patient
Resumo:
The composition of amorphous oxide semiconductors, which are well known for their optical transparency, can be tailored to enhance their absorption and induce photoconductivity for irradiation with green, and shorter wavelength light. In principle, amorphous oxide semiconductor-based thin-film photoconductors could hence be applied as photosensors. However, their photoconductivity persists for hours after illumination has been removed, which severely degrades the response time and the frame rate of oxide-based sensor arrays. We have solved the problem of persistent photoconductivity (PPC) by developing a gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer. Applying a short-duration (10 ns) voltage pulse to these devices induces electron accumulation and accelerates their recombination with ionized oxygen vacancy sites, which are thought to cause PPC. We have integrated these photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
In a hospital environment that demands a careful balance between commercial and clinical interests, the extent to which physicians are involved in hospital leadership varies greatly. This paper assesses the influence of the extent of this involvement on staff-to-patient ratios. Using data gathered from 604 hospitals across Germany, this study evidences the positive relationship between a full-time medical director (MD) or heavily involved part-time MD and a higher staff-to-patient ratio. The data allows us to control for a range of confounding variables, such as size, rural/urban location, ownership structure, and case-mix. The results contribute to the sparse body of empirical research on the effect of clinical leadership on organizational outcomes.
Resumo:
Cyanobacteria perform photosynthesis and respiration in the thylakoid membrane, suggesting that the two processes are interlinked. However, the role of the respiratory electron transfer chain under natural environmental conditions has not been established. Through targeted gene disruption, mutants of Synechocystis sp. PCC 6803 were generated that lacked combinations of the three terminal oxidases: the thylakoid membrane-localized cytochrome c oxidase (COX) and quinol oxidase (Cyd) and the cytoplasmic membrane-localized alternative respiratory terminal oxidase. All strains demonstrated similar growth under continuous moderate or high light or 12-h moderate-light/dark square-wave cycles. However, under 12-h high-light/dark square-wave cycles, the COX/Cyd mutant displayed impaired growth and was completely photobleached after approximately 2 d. In contrast, use of sinusoidal light/dark cycles to simulate natural diurnal conditions resulted in little photobleaching, although growth was slower. Under high-light/dark square-wave cycles, the COX/Cyd mutant suffered a significant loss of photosynthetic efficiency during dark periods, a greater level of oxidative stress, and reduced glycogen degradation compared with the wild type. The mutant was susceptible to photoinhibition under pulsing but not constant light. These findings confirm a role for thylakoid-localized terminal oxidases in efficient dark respiration, reduction of oxidative stress, and accommodation of sudden light changes, demonstrating the strong selective pressure to maintain linked photosynthetic and respiratory electron chains within the thylakoid membrane. To our knowledge, this study is the first to report a phenotypic difference in growth between terminal oxidase mutants and wild-type cells and highlights the need to examine mutant phenotypes under a range of conditions.
Resumo:
OBJECTIVE: This study identifies the stakeholders who have a role in medical device purchasing within the wider system of health-care delivery and reports on their particular challenges to promote patient safety during purchasing decisions. METHODS: Data was collected through observational work, participatory workshops, and semi-structured qualitative interviews, which were analyzed and coded. The study takes a systems-based and engineering design approach to the study. Five hospitals took part in this study, and the participants included maintenance, training, clinical end-users, finance, and risk departments. RESULTS: The main stakeholders for purchasing were identified to be staff from clinical engineering (Maintenance), device users (Clinical), device trainers (Training), and clinical governance for analyzing incidents involving devices (Risk). These stakeholders display varied characteristics in terms of interpretation of their own roles, competencies for selecting devices, awareness and use of resources for purchasing devices, and attitudes toward the purchasing process. The role of "clinical engineering" is seen by these stakeholders to be critical in mediating between training, technical, and financial stakeholders but not always recognized in practice. CONCLUSIONS: The findings show that many device purchasing decisions are tackled in isolation, which is not optimal for decisions requiring knowledge that is currently distributed among different people within different departments. The challenges expressed relate to the wider system of care and equipment management, calling for a more systemic view of purchasing for medical devices.
Resumo:
This paper reports on the use of a parallelised Model Predictive Control, Sequential Monte Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory control in air traffic management specifically around the terminal manoeuvring area of an airport. The target problem is nonlinear, highly constrained, non-convex and uses a single decision-maker with multiple aircraft. The implementation includes a spatio-temporal wind model and rolling window simulations for realistic ongoing scenarios. The method is capable of handling arriving and departing aircraft simultaneously including some with very low fuel remaining. A novel flow field is proposed to smooth the approach trajectories for arriving aircraft and all trajectories are planned in three dimensions. Massive parallelisation of the algorithm allows solution speeds to approach those required for real-time use.
Resumo:
In recent literature, ℓ1-regularised MPC, or ℓasso-MPC, has been recommended for control tasks involving complex requirements on the control signals, for instance, the simultaneous solution of regulation and sharp control allocation for redundantly-actuated systems. This is due to the implicit thresholding ability of LASSO regression. In this paper, a stabilising terminal cost featuring a mixed ℓ1/ℓ2 2 penalty is presented. Then, a candidate terminal controller is computed, with the aim of enlarging the region of attraction. © 2013 EUCA.