44 resultados para surface plasmon wave


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate numerically and experimentally the on-chip nanoscale focusing of surface plasmon polaritons (SPPs) in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide © 2011 OSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We experimentally demonstrate the planar focusing of Surface Plasmon Polaritons using space variant PMMA subwavelength features on top of a metallic film. Focusing is obtained by creating an effective graded refractive index profile. © OSA 2012.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide. © 2011 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate numerically and experimentally the on-chip nanoscale focusing of surface plasmon polaritons (SPPs) in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. © 2010 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ultimate objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of soil modulus as a function of strain. In field experiments, an excitation is applied on the ground surface using large-scale shakers, and the response of the soil deposit is recorded through receivers embedded in the soil. The focus of this paper is on the simulation and observation of signals that would be recorded at the receiver locations under idealized conditions to provide guidelines on the interpretation of the field measurements. Discrete models are used to reproduce one-dimensional and three-dimensional geometries. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave; therefore related to the constrained modulus of the material. If one considers, on the other hand, phase differences between the motions at two receivers, the picture is far more complicated and one would obtain propagation velocities, function of frequency and measuring location, which do not correspond to either the constrained modulus or Young's modulus. It is necessary then to conduct more rigorous and complicated analyses in order to interpret the data. This paper discusses and illustrates these points. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently developed equipment allows measurement of the shear modulus of soil in situ as a function of level of strain. In these field experiments, the excitation is applied on the ground surface using large scale shakers, and the response of the soil deposit is recorded through embedded receivers. The focus of this paper is on the simulation of signals which would be recorded at the receiver locations in idealized conditions to provide guidelines on the interpretation of field measurements. Discrete and finite element methods are employed to model one dimensional and three dimensional geometries, respectively, under various lateral boundary conditions. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave, related to the constrained modulus of the material, regardless of lateral boundary conditions. If one considers, on the other hand, phase differences between the motions at two receivers the picture is far more complicated and one would obtain propagation velocities, function of frequency and depth, which do not correspond to either the constrained modulus or Young's modulus. It is thus necessary to apply some care when interpreting the data from field tests based on vertical steady state vibrations. The use of inverse analysis can be considered as a way of extracting the shear modulus of soil from the field test measurements. © 2008 ASCE.