64 resultados para stereo-immersive VR
Resumo:
A convenient system for the rapid extraction of three dimensional information from pairs of SEM images has been constructed, eliminating the need for time-consuming photography. Results are produced in a digestable form. Distortions inherent in the SEM record display and in the photographic system are not relevant to the system described; only those arising within the column and stage need be considered.
Resumo:
This paper reports work exploring the relationship between solid modelling, mesh generating and flow solving in the general context of design optimisation. In particular, the work is interested in the opportunities derived by tightly integrating these traditionally separate activities together within one piece of software. The near term aim is to ask the question: how might a truly virtual, rapid prototyping design system, with a tactile response like sculpting in clay, be constructed? This paper reports the building blocks supporting that ambition.
Resumo:
In stereo displays, binocular disparity creates a striking impression of depth. However, such displays present focus cues - blur and accommodation - that specify a different depth than disparity, thereby causing a conflict. This conflict causes several problems including misperception of the 3D layout, difficulty fusing binocular images, and visual fatigue. To address these problems, we developed a display that preserves the advantages of conventional stereo displays, while presenting correct or nearly correct focus cues. In our new stereo display each eye views a display through a lens that switches between four focal distances at very high rate. The switches are synchronized to the display, so focal distance and the distance being simulated on the display are consistent or nearly consistent with one another. Focus cues for points in-between the four focal planes are simulated by using a depth-weighted blending technique. We will describe the design of the new display, discuss the retinal images it forms under various conditions, and describe an experiment that illustrates the effectiveness of the display in maximizing visual performance while minimizing visual fatigue. © 2009 SPIE-IS&T.
Resumo:
We present a multispectral photometric stereo method for capturing geometry of deforming surfaces. A novel photometric calibration technique allows calibration of scenes containing multiple piecewise constant chromaticities. This method estimates per-pixel photometric properties, then uses a RANSAC-based approach to estimate the dominant chromaticities in the scene. A likelihood term is developed linking surface normal, image intensity and photometric properties, which allows estimating the number of chromaticities present in a scene to be framed as a model estimation problem. The Bayesian Information Criterion is applied to automatically estimate the number of chromaticities present during calibration. A two-camera stereo system provides low resolution geometry, allowing the likelihood term to be used in segmenting new images into regions of constant chromaticity. This segmentation is carried out in a Markov Random Field framework and allows the correct photometric properties to be used at each pixel to estimate a dense normal map. Results are shown on several challenging real-world sequences, demonstrating state-of-the-art results using only two cameras and three light sources. Quantitative evaluation is provided against synthetic ground truth data. © 2011 IEEE.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.
Resumo:
The commercial far-range (>10m) infrastructure spatial data collection methods are not completely automated. They need significant amount of manual post-processing work and in some cases, the equipment costs are significant. This paper presents a method that is the first step of a stereo videogrammetric framework and holds the promise to address these issues. Under this method, video streams are initially collected from a calibrated set of two video cameras. For each pair of simultaneous video frames, visual feature points are detected and their spatial coordinates are then computed. The result, in the form of a sparse 3D point cloud, is the basis for the next steps in the framework (i.e., camera motion estimation and dense 3D reconstruction). A set of data, collected from an ongoing infrastructure project, is used to show the merits of the method. Comparison with existing tools is also shown, to indicate the performance differences of the proposed method in the level of automation and the accuracy of results.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.
Resumo:
We present a system for augmenting depth camera output using multispectral photometric stereo. The technique is demonstrated using a Kinect sensor and is able to produce geometry independently for each frame. Improved reconstruction is demonstrated using the Kinect's inbuilt RGB camera and further improvements are achieved by introducing an additional high resolution camera. As well as qualitative improvements in reconstruction a quantitative reduction in temporal noise is shown. As part of the system an approach is presented for relaxing the assumption of multispectral photometric stereo that scenes are of constant chromaticity to the assumption that scenes contain multiple piecewise constant chromaticities.