37 resultados para singular Riemannian foliations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multivariate, robust, rational interpolation method for propagating uncertainties in several dimensions is presented. The algorithm for selecting numerator and denominator polynomial orders is based on recent work that uses a singular value decomposition approach. In this paper we extend this algorithm to higher dimensions and demonstrate its efficacy in terms of convergence and accuracy, both as a method for response suface generation and interpolation. To obtain stable approximants for continuous functions, we use an L2 error norm indicator to rank optimal numerator and denominator solutions. For discontinous functions, a second criterion setting an upper limit on the approximant value is employed. Analytical examples demonstrate that, for the same stencil, rational methods can yield more rapid convergence compared to pseudospectral or collocation approaches for certain problems. © 2012 AIAA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper addresses the problem of low-rank trace norm minimization. We propose an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank optimization is characterized by an efficient factorization that makes the trace norm differentiable in the search space and the computation of duality gap numerically tractable. The search space is nonlinear but is equipped with a Riemannian structure that leads to efficient computations. We present a second-order trust-region algorithm with a guaranteed quadratic rate of convergence. Overall, the proposed optimization scheme converges superlinearly to the global solution while maintaining complexity that is linear in the number of rows and columns of the matrix. To compute a set of solutions efficiently for a grid of regularization parameters we propose a predictor-corrector approach that outperforms the naive warm-restart approach on the fixed-rank quotient manifold. The performance of the proposed algorithm is illustrated on problems of low-rank matrix completion and multivariate linear regression. © 2013 Society for Industrial and Applied Mathematics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work considers the problem of fitting data on a Lie group by a coset of a compact subgroup. This problem can be seen as an extension of the problem of fitting affine subspaces in n to data which can be solved using principal component analysis. We show how the fitting problem can be reduced for biinvariant distances to a generalized mean calculation on an homogeneous space. For biinvariant Riemannian distances we provide an algorithm based on the Karcher mean gradient algorithm. We illustrate our approach by some examples on SO(n). © 2010 Springer -Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical analysis of diffusion tensor imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies exploiting a Riemannian framework to address these challenges, the present paper proposes a novel metric and an accompanying computational framework for DTI data processing. The proposed approach grounds the signal processing operations in interpolating curves. Well-chosen interpolating curves are shown to provide a computational framework that is at the same time tractable and information relevant for DTI processing. In addition, and in contrast to earlier methods, it provides an interpolation method which preserves anisotropy, a central information carried by diffusion tensor data. © 2013 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.