112 resultados para single-mode fiber
Resumo:
Advanced waveguide lasers, operating both in continuous wave and pulsed regimes, have been realized in an active phosphate glass by direct writing with femtosecond laser pulses. Stable single mode operation was obtained; the laser provided more than 50 m W in single longitudinal and transverse mode operation with 21% slope efficiency. Furthermore, by combining a high gain waveguide and an innovated fiber-pigtailed saturable absorber based on carbon nanotubes, a mode-locked ring laser providing transform limited 1.6 ps pulses was demonstrated. © 2007 IEEE.
Resumo:
We propose a new practical multimode fiber optical launch scheme, providing near single mode group excitation for >5 times transmission bandwidth improvement. Equalization-free transmission of a 10-Gb/s signal over 220-m fiber is achieved in experimental demonstrations. © 2010 Optical Society of America.
Resumo:
We report on spatial pattern formation, and appearances of 'optical bullet holes' in single-mode microcavities that are filled with liquid-crystals, when pumped above the cavity resonance frequency. These phenomena only occur beyond the bistability threshold. ©2002 Optical Society of America.
Resumo:
In this paper authors report the first demonstration of a diode laser powered Kerr effect device, consisting of a single birefringent fiber, able to phase-shift and switch an optical signal generated by a second laser diode. They have obtained fast, stable phase-shifting of 90° in a single fiber, at a coupled pump power of only 20 mW. Using this phase shift to induce polarization switching with resultant gating, 25% modulation of the diode laser signal has been observed, with a detection limited-rise time of 10ns.
Resumo:
In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.
Resumo:
The impact of Adaptive Cyclic Prefix (ACP) on the transmission performance of Adaptively Modulated Optical OFDM (AMOOFDM) is explored thoroughly in directly modulated DFB laser-based, IMDD links involving Multimode Fibres (MMFs)/Single-Mode Fibres (SMFs). Three ACP mechanisms are identified, each of which can, depending upon the link properties, affect significantly the AMOOFDM transmission performance. In comparison with AMOOFDM having a fixed cyclic prefix duration of 25%, AMOOFDM with ACP can not only improve the transmission capacity by a factor of >2 (>1.3) for >1000 m MMFs (<80 km SMFs) with 1 dB link loss margin enhancement, but also relax considerably the requirement on the DFB bandwidth.
Resumo:
The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.
Resumo:
Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).
Resumo:
Detailed investigations of the effectiveness of three widely adopted optical orthogonal frequency division multiplexing (OOFDM) adaptive loading algorithms, including power loading (PL), bit loading (BL), and bit-and-power loading (BPL), are undertaken, over < 100km single-mode fibre (SMF) system without incorporating inline optical amplification and chromatic dispersion (CD) compensation. It is shown that the BPL (PL) algorithm always offers the best (worst) transmission performance. The absolute transmission capacity differences between these algorithms are independent of transmission distance and launched optical power. Moreover, it is shown that in comparison with the most sophisticated BPL algorithm, the simplest PL algorithm is effective in escalating the OOFDM SMF links performance to its maximum potential. On the other hand, when employing a large number of subcarriers and a high digital-to-analogue DAC)/analogue-to-digital (ADC) sampling rate, the sophisticated BPL algorithm has to be adopted. © 2011 IEEE.
Resumo:
Three novel designs of adaptively modulated optical orthogonal frequency division multiplexing modems using subcarrier modulation (AMOOFDM-SCM) are proposed, for the first time, each of which requires a single IFFT/FFT operation. These designs has a number of salient advantages including a significantly simplified modem configuration due to the involvement of a single IFFT/FFT operation, input/output reconfigurability, dynamic bandwidth allocation capability, cost reduction and system flexibility and performance robustness to variations in transmission link conditions. Investigations show that these three modems are capable of supporting >60Gb/s AMOOFDM-SCM signal transmission over 20km, 40km and 60km single-mode fibre-based intensity modulation and direct detection transmission links without optical amplification and chromatic dispersion compensation. Copyright © 2010 The authors.
Resumo:
In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.
Resumo:
Nonlinear analysis of thermoacoustic instability is essential for prediction of frequencies, amplitudes and stability of limit cycles. Limit cycles in thermoacoustic systems are reached when the energy input from driving processes and energy losses from damping processes balance each other over a cycle of the oscillation. In this paper an integral relation for the rate of change of energy of a thermoacoustic system is derived. This relation is analogous to the well-known Rayleigh criterion in thermoacoustics, but can be used to calculate the amplitudes of limit cycles, as well as their stability. The relation is applied to a thermoacoustic system of a ducted slot-stabilized 2-D premixed flame. The flame is modelled using a nonlinear kinematic model based on the G-equation, while the acoustics of planar waves in the tube are governed by linearised momentum and energy equations. Using open-loop forced simulations, the flame describing function (FDF) is calculated. The gain and phase information from the FDF is used with the integral relation to construct a cyclic integral rate of change of energy (CIRCE) diagram that indicates the amplitude and stability of limit cycles. This diagram is also used to identify the types of bifurcation the system exhibits and to find the minimum amplitude of excitation needed to reach a stable limit cycle from another linearly stable state, for single- mode thermoacoustic systems. Furthermore, this diagram shows precisely how the choice of velocity model and the amplitudedependence of the gain and the phase of the FDF influence the nonlinear dynamics of the system. Time domain simulations of the coupled thermoacoustic system are performed with a Galerkin discretization for acoustic pressure and velocity. Limit cycle calculations using a single mode, as well as twenty modes, are compared against predictions from the CIRCE diagram. For the single mode system, the time domain calculations agree well with the frequency domain predictions. The heat release rate is highly nonlinear but, because there is only a single acoustic mode, this does not affect the limit cycle amplitude. For the twenty-mode system, however, the higher harmonics of the heat release rate and acoustic velocity interact resulting in a larger limit cycle amplitude. Multimode simulations show that in some situations the contribution from higher harmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems. Copyright © 2012 by ASME.