37 resultados para research supervision in engineering and IT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The US National Academy of Engineering recently identified restoring and improving urban infrastructure as one of the grand challenges of engineering. Part of this challenge stems from the lack of viable methods to map/label existing infrastructure. For computer vision, this challenge becomes “How can we automate the process of extracting geometric, object oriented models of infrastructure from visual data?” Object recognition and reconstruction methods have been successfully devised and/or adapted to answer this question for small or linear objects (e.g. columns). However, many infrastructure objects are large and/or planar without significant and distinctive features, such as walls, floor slabs, and bridge decks. How can we recognize and reconstruct them in a 3D model? In this paper, strategies for infrastructure object recognition and reconstruction are presented, to set the stage for posing the question above and discuss future research in featureless, large/planar object recognition and modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a perspective investigation of computational modelling of blood fluid in microchannel devices as a preparation for future research on fluid-structure interaction (FSI) in biofluid mechanics. The investigation is carried out through two aspects, respectively on physical behaviours of blood flow in microchannels and appropriate methodology for modelling. The physics of blood flow is targeted to the challenges for describing blood flow in microchannels, including rheology of blood fluid, suspension features of red blood cells (RBCs), laminar hydrodynamic influence and effect of surface roughness. The analysis shows that due to the hyperelastic property of RBC and its comparable dimension with microchannels, blood fluid shows complex behaviours of two phase flow. The trajectory and migration of RBCs require accurate description of RBC deformation and interaction with plasma. Following on a discussion of modelling approaches, i.e. Eulerian method and Lagrangian method, the main stream modelling methods for multiphase flow are reviewed and their suitability to blood flow is analysed. It is concluded that the key issue for blood flow modelling is how to describe the suspended blood cells, modelled by Lagrangian method, and couple them with the based flow, modelled by Eulerian method. The multiphase flow methods are thereby classified based on the number of points required for describing a particle, as follows: (i) single-point particle methods, (ii) mutli-point particle methods, (iii) functional particle methods, and (iv) fluid particle methods. While single-point particle methods concentrate on particle dynamic movement, multipoint and functional particle methods can take into account particle mechanics and thus offer more detailed information for individual particles. Fluid particle methods provide good compromise between two phases, but require additional information for particle mechanics. For furthermore detailed description, we suggest to investigate the possibility using two domain coupling method, in which particles and base flow are modelled by two separated solvers. It is expected that this paper could clarify relevant issues in numerical modelling of blood flow in microchannels and induce some considerations for modelling blood flow using multiphase flow methods. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book contains invited lectures and selected contributions presented at the Enzo Levi and XVII Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2011.