34 resultados para reactive sera


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the standard many-body expansion technique that is used to approximate the total energy of a molecular system to enable the treatment of chemical reactions by quantum chemical techniques. By considering all possible assignments of atoms to monomer units of the many-body expansion and associating suitable weights with each, we construct a potential energy surface that is a smooth function of the nuclear positions. We derive expressions for this reactive many-body expansion energy and describe an algorithm for its evaluation, which scales polynomially with system size, and therefore will make the method feasible for future condensed phase simulations. We demonstrate the accuracy and smoothness of the resulting potential energy surface on a molecular dynamics trajectory of the protonated water hexamer, using the Hartree-Fock method for the many-body term and Møller-Plesset theory for the low order terms of the many-body expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive magnesia (MgO) has emerged as an essential component in a new family of cements with significantly superior technical and environmental performance over Portland cement. The physical characteristics of different reactive magnesia, which are likely to affect their engineering performance, vary considerably depending on their origin and manufacturing processes. To appropriately utilise such a material, it is essential to develop a better understanding of the characteristics of different magnesia from various sources. In this study, the detailed characterisation of 14 commercial magnesia in terms of reactivity, textural properties, X-ray diffraction pattern, pH value and hydration behaviour and morphology is presented and correlation between them is developed. Relationships were developed between the reactivity, specific surface area, agglomeration ratio and hydration rate based on the experimental observations. As a result, the reactive magnesia used in this study were grouped into three categories and their characteristics and anticipated performances in different applications were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used a cyclic reactive ion etching (RIE) process to increase the Co catalyst density on a cobalt disilicide (CoSi2) substrate for carbon nanotube (CNT) growth. Each cycle of catalyst formation consists of a room temperature RIE step and an annealing step at 450 °C. The RIE step transfers the top-surface of CoSi2 into cobalt fluoride; while the annealing reduces the fluoride into metallic Co nanoparticles. We have optimized this cyclic RIE process and determined that the catalyst density can be doubled in three cycles, resulting in a final CNT shell density of 6.6 × 10 11 walls·cm-2. This work demonstrates a very effective approach to increase the CNT density grown directly on silicides. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction between MgO and microsilica has been studied by many researchers, who confirmed the formation of magnesium silicate hydrate. The blend was reported to have the potential as a novel material for construction and environment purposes. However, the characteristics of MgO vary significantly, e.g., reactivity and purity, which would have an effect on the hydration process of MgO-silica blend. This paper investigated the strength and hydration products of reactive MgO and silica blend at room temperature up to 90 days. The existence of magnesium silicate hydrate after 7 days' curing was confirmed with the help of infrared spectroscopy, thermogravimetric analysis and X-ray diffraction. The microstructural and elemental analysis of the resulting magnesium silicate hydrate was conducted using scanning electron microscopy and energy dispersive spectroscopy. In addition, the effect of characteristics of MgO on the hydration process was discussed. It was found that the synthesis of magnesium silicate hydrate was highly dependent on the reactivity of the precursors. MgO and silica with higher reactivity resulted in higher formation rate of magnesium silicate hydrate. In addition, the impurity in the MgO affects the pH value of the blends, which in turn determines the solubility of silica and the formation of magnesium silicate hydrate. © 2014 Elsevier Ltd. All rights reserved.