55 resultados para radioactive ion beam line
Resumo:
The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca. (C) 2005 American Institute of Physics.
Resumo:
A variety of devices at nanometer scale / molecular scale for electronic, photonics, optoelectronics, biological and mechanical applications have been created through a rapid development of materials and fabrication technology. Further development of nanodevices strongly depends on the state-of-the-art knowledge of science and technology at the sub-100nm length scale. This symposium proceedings serves as a nice platform on which scientists and engineers can present and highlight some of the key advances in the following topics: Electronic and optoelectronic devices of nanometer scale / molecular scale. Nanomechanics and NEMS. Electromechanical coupled devices. Manipulation and aligning processes at nanometer scale / molecular scale. Quantum phenomena. Modeling of nanodevices and nanostructures. Fabrication and property characterization of nanodevices. Nanofabrication with focused beam technology, e.g., focused ion beam, laser and proton beam. © 2012 by Pan Stanford Publishing Pte. Ltd. All rights reserved.
Resumo:
The Ni silicide formed at low temperature on Si nanowire has been analyzed by atom probe tomography (APT) thanks to a special technique for sample preparation. A method of preparation has been developed using the focused ion beam (FIB) for the APT analysis of nanowires (NWs). This method allow for the measurement of the radial distribution when a NW is cut, buried in a protective metal matrix, and finally mounted on the APT support post. This method was used for phosphorous doped Si NWs with or without a silicide shell, and allows obtaining the concentration and distribution of chemical elements in three-dimensions (3D) in the radial direction of the NWs. The distribution of atoms in the NWs has been measured including dopants and Au contamination. These measurements show that δ-Ni2Si phase is formed on Si NW, Au is found as cluster at the Ni/δ-Ni2Si interface and P is segregated at the δ-Ni2Si/ Si NW interface. The results obtained on NWs after silicidation were compared with the silicide on the Si substrate, showing that the same silicide phase δ-Ni2Si formed in both cases (NWs and substrate). © 2013 Elsevier B.V. All rights reserved.
Resumo:
The measurement of high speed laser beam parameters during processing is a topic that has seen growing attention over the last few years as quality assurance places greater demand on the monitoring of the manufacturing process. The targets for any monitoring system is to be non-intrusive, low cost, simple to operate, high speed and capable of operation in process. A new ISO compliant system is presented based on the integration of an imaging plate and camera located behind a proprietary mirror sampling device. The general layout of the device is presented along with the thermal and optical performance of the sampling optic. Diagnostic performance of the system is compared with industry standard devices, demonstrating the high quality high speed data which has been generated using this system.