43 resultados para polymeric nanocomposite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-ofprinciple demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ -15 dB) and low crosstalk values (< -30 dB) are achieved for the fabricated samples while better than ± 6 μm -1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10-12 is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solution processed aluminum-doped zinc oxide (AZO)/multi-walled carbon nanotube (MWCNT) nanocomposite thin film has been developed offering simultaneously high optical transparency and low electrical resistivity, with a conductivity figure of merit (σDC/σopt) of ~75-better than PEDOT:PSS and many graphene derivatives. The reduction in sheet resistance of thin films of pristine MWCNTs is attributed to an increase in the conduction pathways within the sol-gel derived AZO matrix and reduced inter-MWCNT contact resistance. Films have been extensively characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffractometry (XRD), photoluminescence (PL), and ultraviolet-visible (UV-vis) spectroscopy. © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 4-channel polymeric optical bus module suitable for use in board-levelinterconnections is presented. Low-loss and low-crosstalk module performance is achieved, while-1 dB alignment tolerances better than ± 8 μm are demonstrated. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the development of a drug-loaded triple-layer platform consisting of thin film biodegradable polymers, in a properly designed form for the desired gradual degradation. Poly(dl-lactide-co-glycolide) (PLGA (65:35), PLGA (75:25)) and polycaprolactone (PCL) were grown by spin coating technique, to synthesize the platforms with the order PCL/PLGA (75:25)/PLGA (65:35) that determine their degradation rates. The outer PLGA (65:35) layer was loaded with dipyridamole, an antiplatelet drug. Spectroscopic ellipsometry (SE) in the Vis-far UV range was used to determine the nanostructure, as well as the content of the incorporated drug in the as-grown platforms. In situ and real-time SE measurements were carried out using a liquid cell for the dynamic evaluation of the fibrinogen and albumin protein adsorption processes. Atomic force microscopy studies justified the SE results concerning the nanopores formation in the polymeric platforms, and the dominant adsorption mechanisms of the proteins, which were defined by the drug incorporation in the platforms. © 2013 Elsevier B.V. All rights reserved.