37 resultados para polymer composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrically conductive composites that contain conductive filler dispersed in an insulating polymer matrix are usually prepared by the vigorous mixing of the components. This affects the structure of the filler particles and thereby the properties of the composite. It is shown that by careful mixing nano-scale features on the surface of the filler particles can be retained. The fillers used possess sharp surface protrusions similar to the tips used in scanning tunnelling microscopy. The electric field strength at these tips is very large and results in field assisted (Fowler-Nordheim) tunnelling. In addition the polymer matrix intimately coats the filler particles and the particles do not come into direct physical contact. This prevents the formation of chains of filler particles in close contact as the filler content increases. In consequence the composite has an extremely high resistance even at filler loadings above the expected percolation threshold. The retention of filler particle morphology and the presence of an insulating polymer layer between them endow the composite with a number of unusual properties. These are presented here together with appropriate physical models. © 2005 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.