37 resultados para pneumatic conveying


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a study of the development of the three-dimensional flowfield within the rotor blades of a low-speed, large-scale axial flow turbine. Measurements have been performed in the rotating and stationary frames of reference. Time-mean data have been obtained using miniature five-hole pneumatic probes, whereas the unsteady development of the flow has been determined using three-axis subminiature hot-wire anemometers. Additional information is provided by the results of blade-surface flow-visualization experiments and surface-mounted hot-film anemometers. The development of the stator exit flow, as it passes through the rotor blades, is described. Unsteady data suggest that the presence of the rotor secondary and tip leakage flows restricts the region of unsteady interaction to near midspan when the stator wakes and secondary flows are adjacent to the suction surface. Surface-mounted hot-film data show that this affects the suction-side laminar-turbulent transition process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shear layers shed by aircraft wings roll up into vortices. A similar, though far less common, phenomenon can occur in the wake of a turbomachine blade. This paper presents experimental data from a new single stage turbine that has been commissioned at the Whittle Laboratory. Two low aspect ratio stators have been tested with the same rotor row. Surface flow visualisation illustrates the extremely strong secondary flows present in both NGV designs. These secondary flows lead to conventional passage vortices but also to an intense vortex sheet which is shed from the trailing edge of the blades. Pneumatic probe traverse show how this sheet rolls up into a concentrated vortex in the second stator design, but not in the first. A simple numerical experiment is used to model the shear layer instability and the effects of trailing edge shape and exit yaw angle distribution are investigated. It is found that the latter has a strong influence on shear layer rollup: inhibiting the formation of a vortex downstream of NGV 1 but encouraging it behind NGV 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Compound lean angles have been employed to achieve relatively low blade loading for hub and tip section and so reduce the secondary losses. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. Agreement between the simulations and the measurements has been found. The unsteady measurements indicate that there is a significant effect of the stator flow interaction in the downstream rotor blade. The transport of the stator viscous flow through the rotor blade row is described. Unsteady numerical simulations were found to be successful in predicting accurately the flow near the secondary flow interaction regions compared to steady simulations. A method to calculate the unsteady loss generated inside the blade row was developed from the steady numerical simulations. The contribution of various regions in the blade to the unsteady loss generation was evaluated. This method can assist the designer in identifying and optimizing the features of the flow that are responsible for the majority of the unsteady loss production. An analytical model was developed to quantify this effect for the vortex transport inside the downstream blade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. The loss measurements at the exit of the stator blade showed an increase in stagnation pressure loss due to the delta wing vortex transport. The increase in loss was 21% of the datum stator loss, demonstrating the importance of this vortex interaction. The transport of the stator viscous flow through the rotor blade row is also described. The rotor exit flow was affected by the interaction between the enhanced stator passage vortex and the rotor blade row. Flow underturning near the hub and overturning towards the mid-span was observed, contrary to the classical model of overturning near the hub and underturning towards the mid-span. The unsteady numerical simulation results were further analysed to identify the entropy producing regions in the unsteady flow field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the effect of a single spanwise 2D wire upon the downstream position of boundary layer transition under steady and unsteady inflow conditions. The study is carried out on a high turning, high-speed, low pressure turbine (LPT) profile designed to take account of the unsteady flow conditions. The experiments were carried out in a transonic cascade wind tunnel to which a rotating bar system had been added. The range of Reynolds and Mach numbers studied includes realistic LPT engine conditions and extends up to the transonic regime. Losses are measured to quantify the influence of the roughness with and without wake passing. Time resolved measurements such as hot wire boundary layer surveys and surface unsteady pressure are used to explain the state of the boundary layer. The results suggest that the effect of roughness on boundary layer transition is a stability governed phenomena, even at high Mach numbers. The combination of the effect of the roughness elements with the inviscid Kelvin-Helmholtz instability responsible for the rolling up of the separated shear layer (Stieger [1]) is also examined. Wake traverses using pneumatic probes downstream of the cascade reveal that the use of roughness elements reduces the profile losses up to exit Mach numbers of 0.8. This occurs with both steady and unsteady inflow conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the development of miniature McKibben actuators. Due to their compliancy, high actuation force, and precision, these actuators are on the one hand interesting for medical applications such as prostheses and instruments for surgery and on the other hand for industrial applications such as for assembly robots. During this research, pneumatic McKibben actuators have been miniaturized to an outside diameter of 1.5 mm and a length ranging from 22 mm to 62 mm. These actuators are able to achieve forces of 6 N and strains up to about 15% at a supply pressure of 1 MPa. The maximal actuation speed of the actuators measured during this research is more than 350 mm/s. Further, positioning experiments with a laser interferometer and a PI controller revealed that these actuators are able to achieve sub-micron positioning resolution. © 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.