47 resultados para organic photonic materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic thin-film transistors based on polycrystalline copper phthalocyanine (CuPc) were fabricated by using poly(vinyl alcohol) as gate dielectric. After treatment of the gate dielectric using an octadecyltrichlorosilane self-assembled monolayer, a mobility of up to 0.11 cm2/V∈s was achieved, which is comparable to that of single-crystal CuPc devices (0.1-1 cm2/V∈s). The surface morphology was analyzed and the possible reasons for the enhanced mobility are discussed. © 2009 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past years, organic materials have been extensively investigated as an electronic material for organic field effect transistors (OFETs). In this paper, we briefly summarize the current status of organic field effect transistors including materials design, device physics, molecular electronics and the application of carbon nanotubes in molecular electronics. Future prospects and investigations required to improve the OFET performance are also involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results on laser action from liquid crystal compounds whereby one sub-unit of the molecular structure consists of the cyano-substituted chromophore, {phenylene-bis (2-cyanopropene)}, similar to the basic unit of the semiconducting polymer structure poly(cyanoterephthalylidene). These compounds were found to exhibit nematic liquid crystal phases. In addition, by virtue of the liquid crystalline properties, the compounds were found to be highly miscible in wide temperature range commercial nematogen mixtures. When optically excited at λ = 355 nm, laser emission was observed in the blue/green region of the visible spectrum (480-530 nm) and at larger concentrations by weight than is achievable using conventional laser dyes. Upon increasing the concentration of dye from 2 to 5 wt.% the threshold was found to increase from Eth = 0.42 ± 0.02 μJ/pulse (≈20 mJ/cm2) to Eth = 0.66 ± 0.03 μJ/pulse (≈34 mJ/cm2). Laser emission was also observed at concentrations of 10 wt.% but was less stable than that observed for lower concentrations of the chromophore. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our results on integrated photonic devices fabricated using InGaAs quantum-dots. Selective-area metal organic chemical vapor deposition (MOCVD) is used to grow the active region with quantum dots emitting at different wavelengths for fabrication of the integrated devices. We will also review the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures grown by MOCVD. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with several alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Covering a nano-patterned titanium dioxide photonic crystal (PC) within a well-oriented film of dye-doped liquid crystal (LC), a distributed feedback laser is constructed whereby the emission characteristics can be manipulated in-situ using an electric field. This hybrid organic-inorganic structure permits simultaneous selectivity of both the beam pattern and laser wavelength by electrical addressing of the LC director. In addition, laser emission is obtained both in the plane and normal to the PC. Along with experimental data, a theoretical model is presented that is based upon an approximate calculation of the band structure of this birefringent, tuneable laser device. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photonic crystals are materials that are used to control or manipulate the propagation of light through a medium for a desired application. Common fabrication methods to prepare photonic crystals are both costly and intricate. However, through a cost-effective laser-induced photochemical patterning, one-dimensional responsive and tuneable photonic crystals can easily be fabricated. These structures act as optical transducers and respond to external stimuli. These photonic crystals are generally made of a responsive hydrogel that can host metallic nanoparticles in the form of arrays. The hydrogel-based photonic crystal has the capability to alter its periodicity in situ but also recover its initial geometrical dimensions, thereby rendering it fully reversible and reusable. Such responsive photonic crystals have applications in various responsive and tuneable optical devices. In this study, we fabricated a pH-sensitive photonic crystal sensor through photochemical patterning and demonstrated computational simulations of the sensor through a finite element modelling technique in order to analyse its optical properties on varying the pattern and characteristics of the nanoparticle arrays within the responsive hydrogel matrix. Both simulations and experimental results show the wavelength tuneability of the sensor with good agreement. Various factors, including nanoparticle size and distribution within the hydrogel-based responsive matrices that directly affect the performance of the sensors, are also studied computationally. © 2014 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll-to-roll (R2R) gravure exhibits significant advantages such as high precision and throughput for the printing of photoactive and conductive materials and the fabrication of flexible organic electronics such as organic photovoltaics (OPVs). Since the photoactive layer is the core of the OPV, it is important to investigate and finally control the process parameters and mechanisms that define the film morphology in a R2R process. The scope of this work is to study the effect of the R2R gravure printing and drying process on the nanomorphology and nanostructure of the photoactive P3HT:PCBM thin films printed on PEDOT:PSS electrodes towards the fabrication of indium tin oxide (ITO)-free flexible OPVs. In order to achieve this, P3HT:PCBM blends of different concentration were R2R printed under various speeds on the PEDOT:PSS layers. Due to the limited drying time during the rolling, an amount of solvent remains in the P3HT:PCBM films and the slow-drying process takes place which leads to the vertical and lateral phase separation, according to the Spectroscopic Ellipsometry and Atomic Force Microscopy analysis. The enhanced slow-drying leads to stronger phase separation, larger P3HT crystallites according to the Grazing Incidence X-Ray Diffraction data and to weaker mechanical response as it was shown by the nanoindentation creep. However, in the surface of the films the P3HT crystallization is controlled by the impinged hot air during the drying, where the more the drying time the larger the surface P3HT crystallites. The integration of the printed P3HT:PCBM and PEDOT:PSS layers in an OPV device underlined the feasibility of fabricating ITO-free flexible OPVs by R2R gravure processes. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work we compare the performance of organic solar cells, based on the bulk heterojunction system of P3HT:PCBM when adequate silver nanoparticles (NPs) are incorporated in two distinct places among the device structure. Introduction of NPs on top of the transparent anode revealed better overall performance with an increased efficiency of 17%. Alternatively, placing the NPs on top of the active photovoltaic layer resulted to 25% higher photo-current generation albeit with inferior electrical characteristics (i.e series and shunt resistance). Our findings suggest that enhanced scattering to non-specular directions from NPs site is maximized when penetrating light meets the particles after the polymer blend, but even this mechanism is not sufficient enough to explain the enhanced short circuit current observed. A second mechanism should be feasible; that is plasmon enhancement which is more efficient in the case where NPs are in direct contact with the polymer blend. J-V characteristics measured in the dark showed that NPs placed on top of the ITO film act as enhanced hole conducting sites, as evident by the lower series resistance values in these cells, suggesting this mechanism as more significant in this case. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In organic field-effect transistors (OFETs) the electrical characteristics of polymeric semiconducting materials suffer from the presence of structural/morphological defects and grain boundaries as well as amorphous domains within the film, hindering an efficient transport of charges. To improve the percolation of charges we blend a regioregular poly(3-hexylthiophene) (P3HT) with newly designed N = 18 armchair graphene nanoribbons (GNRs). The latter, prepared by a bottom-up solution synthesis, are expected to form solid aggregates which cannot be easily interfaced with metallic electrodes, limiting charge injection at metal-semiconductor interfaces, and are characterized by a finite size, thus by grain boundaries, which negatively affect the charge transport within the film. Both P3HT and GNRs are soluble/dispersible in organic solvents, enabling the use of a single step co-deposition process. The resulting OFETs show a three-fold increase in the charge carrier mobilities in blend films, when compared to pure P3HT devices. This behavior can be ascribed to GNRs, and aggregates thereof, facilitating the transport of the charges within the conduction channel by connecting the domains of the semiconductor film. The electronic characteristics of the devices such as the Ion/Ioff ratio are not affected by the addition of GNRs at different loads. Studies of the electrical characteristics under illumination for potential use of our blend films as organic phototransistors (OPTs) reveal a tunable photoresponse. Therefore, our strategy offers a new method towards the enhancement of the performance of OFETs, and holds potential for technological applications in (opto)electronics.