53 resultados para non-uniform scale perturbation finite difference scheme
Resumo:
Vortex breaking has traditionally been studied for non-uniform critical current densities, although it may also appear due to non-uniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density J for any arbitrary orientation of the transport current and the magnetic field. If J is above a certain critical value, J(c), the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2Cu3O7-delta (YBCO) low-angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov-Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension is an element of(l) and compared it to existing predictions based on the vortex structure.
Resumo:
In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.
Resumo:
The two-dimensional heterostructure nanobelts with a central CdSe region and lateral CdS structures are synthesized by a two-step physical vapor transport method. The large growth rate difference between lateral CdS structures on both +/- (0001) sides of the CdSe region is found. The growth anisotropy is discussed in terms of the polar nature of the side +/- (0001) surfaces of CdSe. High-resolution transmission electron microscopy reveals the CdSe central region covered with non-uniform CdS layer/islands. From micro-photoluminescence measurements, a systematic blueshift of emission energy from the central CdSe region in accordance with the increase of lateral CdS growth temperature is observed. This result indicates that the intermixing rate in the CdSe region with CdS increases with the increase of lateral CdS growth temperature. In conventional CdSSe ternary nanostructures, morphology and emission wavelength were correlated parameters. However, the morphology and emission wavelength are independently controllable in the CdS/CdSe lateral heterostructure nanobelts. This structure is attractive for applications in visible optoelectronic devices.
Resumo:
The aim of this paper is to survey a range of applications of high-frequency asymptotic methods in aeroacoustics. Specifically, we are concerned with problems associated with noise generation, propagation and scattering as found in large modern aeroengines. With regard to noise generation, we consider the interaction between high-frequency vortical waves and thin aerofoils, with particular emphasis being placed on the way in which the vortical waves act on the non-uniform mean flow around the aerofoil. A ray-theoretic description of the resulting sound as it propagates along the engine intake is then presented, followed by consideration of the diffraction of these rays by the (possibly asymmetric) intake lip to produce sound in the far field. A range of more detailed possible extensions is also presented.
Resumo:
Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology offer the potential for low cost deployment and maintenance compared with conventional wired sensor networks, enabling effective and efficient condition monitoring of aged civil engineering infrastructure. We will address wireless propagation for a below to above ground scenario where one of the wireless nodes is located in a below ground fire hydrant chamber to permit monitoring of the local water distribution network. Frequency Diversity (FD) is one method that can be used to combat the damaging effects of multipath fading and so improve the reliability of radio links. However, no quantitative investigation concerning the potential performance gains from the use of FD at 2.4GHz is available for the outlined scenario. In this paper, we try to answer this question by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor nodes. These measurement results are also compared with those obtained from simulations that employ our Modified 2D Finite-Difference Time-Domain (FDTD) approach. ©2009 IEEE.
Resumo:
Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology operate primarily in the 2.4 GHz globally compatible ISM band. However, the wireless propagation channel in this crowded band is notoriously variable and unpredictable, and it has a significant impact on the coverage range and quality of the radio links between the wireless nodes. Therefore, the use of Frequency Diversity (FD) has potential to ameliorate this situation. In this paper, the possible benefits of using FD in a tunnel environment have been quantified by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor motes in the disused Aldwych underground railway tunnel. The objective of this investigation is to characterise the performance of FD in this confined environment. Cross correlation coefficients are calculated from samples of the received power on a number of frequency channels gathered during the field measurements. The low measured values of the cross correlation coefficients indicate that applying FD at 2.4 GHz will improve link performance in a WSN deployed in a tunnel. This finding closely matches results obtained by running a computational simulation of the tunnel radio propagation using a 2D Finite-Difference Time-Domain (FDTD) method. ©2009 IEEE.
Resumo:
The influence of each of the six different types of morphological imperfection - waviness, non-uniform cell wall thickness, cell-size variations, fractured cell walls, cell-wall misalignments, and missing cells - on the yielding of 2D cellular solids has been studied systematically for biaxial loading. Emphasis is placed on quantifying the knock-down effect of these defects on the hydrostatic yield strength and upon understanding the associated deformation mechanisms. The simulations in the present study indicate that the high hydrostatic strength, characteristic of ideal honeycombs, is reduced to a level comparable with the deviatoric strength by several types of defect. The common source of this large knock-down is a switch in deformation mode from cell wall stretching to cell wall bending under hydrostatic loading. Fractured cell edges produce the largest knock-down effect on the yield strength of 2D foams, followed in order by missing cells, wavy cell edges, cell edge misalignments, Γ Voronoi cells, δ Voronoi cells, and non-uniform wall thickness. A simple elliptical yield function with two adjustable material parameters successfully fits the numerically predicted yield surfaces for the imperfect 2D foams, and shows potential as a phenomenological constitutive law to guide the design of structural components made from metallic foams.
Resumo:
A formulation for coupled flow-deformation analysis of methane-hydrate extraction problems is presented. By assuming that the hydrate does not flow, a two phase flow formulation is considered, based on Darcy's law and capillary pressure relation. The formulation is implemented in the finite difference code FLAC. The code was used to investigate the stability of a methane extraction well by depressurizing the well. © 2005 Taylor & Francis Group, London.
Resumo:
Predictions for a 75x205mm surface semi-elliptic defect in the NESC-1 spinning cylinder test have been made using BS PD 6493:1991, the R6 procedure, non-linear cracked body finite element analysis techniques and the local approach to fracture. All the techniques agree in predicting ductile tearing near the inner surface of the cylinder followed by cleavage initiation. However they differ in the amount of ductile tearing, and the exact location and time of any cleavage event. The amount of ductile tearing decreases with increasing sophistication in the analysis, due to the drop in peak crack driving force and more explicit consideration of constraint effects. The local approach predicts a high probability of cleavage in both HAZ and base material after 190s, while the other predictions suggest that cleavage is unlikely in the HAZ due to constraint loss, but likely in the underlying base material. The timing of this event varies from ∼150s for R6 predictions to ∼250-300s using non-linear cracked body analysis.
Resumo:
The usual approach to compressor design considers uniform inlet flow characteristics. Especially in aircraft applications, the inlet flow is quite often non uniform, and this can result in severe performance degradation. The magnitude of this phenomenon is amplified in military engines due to the complexity of inlet duct configurations and the extreme flight conditions. CFD simulation is an innovative and powerful tool for studying inlet distortions and can bring this inside the very early phases of the design process. This project attempts to study the effects of inlet flow distortions in an axial flow compressor trying to minimize the use computer resources and computational time. The first stage of a low bypass ratio compressor has been analyzed and its clean and distorted performance compared outlining the principal changes due to uneven flow distribution: drop in mass flow, increase in pressure and temperature ratios, decrease in surge margin. Three different studies have then been conducted to better understand the effects of the level, the type and the frequency of the distortion.
Resumo:
A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.
Resumo:
The effects of initial soil fabric on behaviors of granular soils are investigated by using Distinct Element Method (DEM) numerical simulation. Soil specimens are represented by an assembly of non-uniform sized spheres with different initial contact normal distributions. Isotropically consolidated triaxial compression loading and extension unloading in both undrained and drained conditions are simulated for vertically- and horizontally-sheared specimens. The numerical simulation results are compared qualitatively with the published experimental data and the effects of initial soil fabric on resulting soil behaviors are discussed, including the effects of specimen reconstitution methods, effects of large preshearing, and anisotropic characteristics in undrained and drained conditions. The effects of initial soil fabric and mode of shearing on the quasi-steady state line are also investigated. The numerical simulation results can systematically explain that the observed experimental behaviors of granular soils are due principally to their conditions of the initial soil fabric. This outcome provides insights into the observed phenomena in microscopic view. © 2011 Elsevier Ltd.
Resumo:
Submarines are efficient sources of low frequency radiated noise due to the vibrations induced by the rotation of the propeller in a non uniform wake. In this work the possibility of using inertial actuators to reduce the far field sound pressure is investigated. The submerged vessel is modelled as a cylindrical shell with two conical end caps. Complicating effects such as ring stiffeners, bulkheads and the fluid loading are taken into account. A harmonic radial force is transmitted from the propeller to the hull through the stern end cone and it is tonal at the blade passing frequency (rotational speed of the shaft multiplied by the number of blades). The actuators are attached at the inside of the prow end cone to form a circumferential array. Both Active Vibration Control (AVC) and Active Structural Acoustic Control (ASAC) are analysed and it is shown that the inertial actuators can significantly reduce the far field sound pressure.
Resumo:
A new theoretical model that predicts the magnetostriction of multilayered composites has been developed. The model takes into account the shear stress between the composite layers and consequently predicts a non-uniform strain along their thickness. The model has been experimentally validated by producing composites formed from three materials with different magnetostrains and mechanical properties, and controlled layer thicknesses in the order of micrometers. Deformations of several ppm, up to 7.5% of the saturation magnetostrain were measured between the edge and the centre of such composites. © 2006 Elsevier B.V. All rights reserved.